Tagged: sustainability

Polyculture/Permaculture

My family… we’re country folk. We know a lot about plants and soil, bugs and birds, and animals. So when my dad said to me this summer that he thought his garden was doing better this year, it was really nothing new. It was surprising, however, because my dad has been really sick this year and unable to do much with the garden, short of getting it planted in the ground. I went over and looked at it. It was covered in ‘weeds.’ Things were growing: vegetables, flowers, herbs. No nice, neat, orderly rows that one would expect in a “typical” garden, but it was working, nonetheless. After a nice visit, my son and I took some vegetables and drove back to suburbia. Continue reading

Advertisements

GreenTown at Kent Conference

Flyer GreenTown at KentOn April 14 the GreenTown conference will be hosted at the Kent State University Hotel and Conference Center. The conference will focus on the creation of healthy and sustainable communities addressing topics such as walkable and bikeable communities, clean water, local food, outdoor space, and creating socially responsible businesses. Pre-conference workshops and activities are offered on April 13. One of the breakout sessions during the main event on April 14 will be a panel discussion titled “Biomimicry: Innovation comes naturally.” Panelists include three of our biomimicry fellows (Emily Kennedy, Adam Pierce and Sebastian Engelhardt). More information is available on the official website of GreenTown at Kent and updates will be posted as the date approaches. Registration for the event is now open.

Biomimicry: A Path to Sustainable Innovation

After a long journey, we are finally able to share a preprint manuscript of our article “Biomimicry: A Path to Sustainable Innovation*,” which has been accepted for publication in Design Issues, an MIT Press Journal. Co-authors Emily Kennedy, Bill Hsiung, Peter Niewiarowski, Matthew Kolodziej and I have diverse backgrounds, including biochemistry, international relations, biology, and fine arts.

The purpose of this paper is to introduce scholars, students, and professionals in all fields of design to biomimicry and its potential to yield sustainable outcomes when practiced in a deep, thoughtful way. The design community is an important leverage point for fueling dialogue about biomimicry because designers work “at the nexus of values, attitudes, needs, and actions,” and, therefore, are uniquely positioned to act as transdisciplinary integrators and facilitators.

We hope you enjoy the reading, and that it sparks some discussion points that will further improve and stimulate the development of biomimicry. It is important to keep disseminating the biomimicry approach in new fields, and shed light on how we, together as a team of advocates for biomimicry, can stimulate newcomers to be more environmentally and socially responsible while still being innovative and not having to reduce your standard of living.

* © Massachusetts Institute of Technology (MIT)

FINAL Manuscript_Biomimicry – A Path to Sustainable Innovation

The Ocean Cleanup

Millions of tons of plastic are circulating in rotating gyres throughout the world’s oceans. It is estimated that the dry weight of the plastic is six times more than the total weight of zooplankton in these gyres. One third of the ocean’s plastic accumulates within the so called “great pacific garbage patch“, which is a gyre of marine debris with an estimated size ranging from 700,000 square kilometers to more than 15,000,000 square kilometers. Ocean pollution has enormous ecological as well as economic effects. Animals are eating up the plastics, thus, the plastics end up in the food chain. It is also estimated that global ocean pollution by plastics costs $13 billion each year (the cost of removing plastic debris from beaches as well as repairing small boat and large vessel damage).

A way to filter plastics from the ocean using natural currents has been developed by 19-year-old Boyan Slat. His approach uses solid floating barriers, placed at locations within the ocean’s gyres, which collect all plastic particles in the ocean’s top-layers without trapping or otherwise harming marine animals. In contrast to nets, solid barriers allow fish to easily swim underneath. Slat’s approach seems to be highly scalable allowing high capture efficiency.

Slat’s envisioned ocean clean up array (image: The Ocean Cleanup)

Slat’s envisioned ocean clean up array (image: The Ocean Cleanup)

Slat envisions a 100-km-long solid floating barrier, which would be the largest structure ever installed on the open seas. Two 50-km-long barrier arms would have to be arranged in a funnel with a 120 degree opening for the further transport of the plastics into the funnel towards a platform where they are collected, compressed and picked up by a ship eight times per year. The barriers would have to be anchored to the approximately four-km-deep ocean bed. In a recent TED talk, Slat estimated that 7.25 tons of plastic can be filtered out the ocean within the next five years using his idea.

According to Slat, more money could be made with the recycled plastic than the costs of realizing his idea. A feasibility study has been provided by Slat and his team. However, critics point out that Slat’s feasibility study is not realistic. First of all, the proposed structure is believed not to be stable enough to resist high waves during storms. So far the deepest anchor constructions in the deep sea reach down to 2.5 km. Another problem could be the capturing of marine animals who live in the ocean’s top-layers. These organisms could settle on the accumulated plastics and travel down the funnel. It is also believed that only large plastic particles can be captured with such a structure since microparticles, which are smaller than five millimeters, can be pushed down 150 m below sea level during storms. Further test studies would have to be conducted to gain realistic estimations of the benefits and disadvantages of Slat’s proposed idea. Slat’s answer to the critics and updates on his approach and feasibility study can be found on the official website of The Ocean Cleanup.