Tagged: nature

Biomimicry & Algorithms

What is programming and what are algorithms? Can we foster an interest in them for anyone who finds programming to be a black box? Can biomimicry help? These are the questions I’m playing around with these days. Can reference to nature take courses in logical thinking beyond typical lessons in sequences, If/Else statements and loops? . I watched The Secret Rules Of Modern Living: Algorithms(trailer) and The Code (trailer) on Netflix over the weekend, still have to finish the code, and I kept thinking ‘wow this is brilliant! I can do this!’ I also got to know about an online course on Teaching Physical Computing with Raspberry Pi through my sponsor TIES and going through it has been very interesting (Raspberry Pi is a mini, cheap computer, not a literal raspberry pie :D, inside joke!),. It led me to Scratch which helps young people learn programming.

Next, I have been thinking; Do I want to teach programming or algorithm development. The answer seems to be easy, because a way to keep someone engaged is to have results and programming is what gives algorithms an outcome. Yet, algorithms can be developed without any computer, while programs need to be written on a computer of some sort in a language (considering analog here as well). Also, it seems to me creating a lesson is different than what I want to do, which is produce a software/piece of a machine. For example, a biomimicry lesson could be similar to an exercise on learning about birds and nesting to come up with the algorithm they use. Instead of an abstract lesson, I want to deliver something students can touch and use hopefully without much outside help. That is not to say, my deliverable cannot involve students going out and experiencing nature while working on/with my product. However, my product needs to be a software and/or a hardware that is attractive, engaging by using nature’s life lessons to teach programming/algorithms to the user.

I can see how nature is brilliant for my task; it has millions of algorithms to teach and we have been learning them for quite a while in the computer science world. My goal is to bring those lessons  to the general public. At the end of The Secret Rules Of Modern Living: Algorithms movie, narrator Marcus du Sautoy mentions how our world wouldn’t function without the power of algorithms and I think that’s absolutely true! As we rely on them greatly, how can we increase everyone’s interest in them?

A Meadow of Inspiration

“Plants are amazing!” This is something I hear a lot from non-botanists. Of course, I know plants are awesome, but every time I turn around, I learn something new and exciting. This semester was no exception. Tasked with a project in my Biomimetic Design class, led by Dr. Petra Gruber, I walked into the meadow to find inspiration– literally.

On a very wet, cold, rainy day in October, I walked to a meadow within our field station property (Bath Nature Preserve, Bath Twp., Akron, Ohio) and found a section to investigate. Indian grass (Sorghastrum nutans) towering over my head, I decided to stop at 20 steps and set up a 1m x 1m plot to sample. October in a meadow doesn’t give you very much to identify, but goldenrod (Solidago spp.) and Indian grass (S. nutans) were plentiful among a few baby asters, Galium spp. (aka ‘Cleavers’ or ‘Bedstraw’), wild strawberry (Fragaria virginiana),clumps of unidentifiable grass and moss. I measured heights of stems and area covered,  took the percent coverage to determine how much each species covered the plot,and took several picture views for record. After returning to campus, I created a hand-drawn schematic of the plot.


Hand-drawn schematic of 1m x 1m meadow plot in Bath Nature Preserve. Oct. 2016

A few weeks later, I returned to the same plot. Apparently my methods of counting and direction are spot-on because my last step landed on a pen I had dropped on that rainy day a few weeks earlier! If you’ve ever done field work, you understand how amazing it is that I found a PEN in the middle of a meadow over 2 meters high! This time I was there to measure the ability of the meadow to hold a load. I admit, I didn’t think the stems would hold up… being so late in the year and being dried out. As usual, though, plants are amazing and surprised me yet again!

I decided to test the load by creating a 1m x 1m foam board that was sturdy, yet lightweight. I placed the board directly over the plot, placing flags on each corner. The flags allowed for a visual cue to observe movement of bot


My husband and daughter gave me a hand in the field at Bath Nature Preserve. Three books really impacted the system. Notice how far the stems are bending, yet still not breaking! Amazing.

h plants and the board, as well as giving a reference point at which to measure the height of the board after each addition of weight. After the foam board was placed on top of the plants, I measured the height at each corner (flag) for the “initial” height. I added one heavy book and measured the height at each corner. Subsequently, I added increasing weight and measured the heights. At 3 books (6.7kg), the system (the meadow plot) could no longer hold the weight. Because this was the same plants were used over the entire experiment, I believe more weight can be held by the plants in true form.


So how does this happen? Plants are amazing. IMeadow roots.pngn the meadow, plants grow up to 10 feet below ground (roots) and above ground. You can imagine how secure this makes these cantilever beams! Here, the Indian grass and Goldenrod grew 1.5m to 2.5m above ground. The stems reached diameters of 2-5mm. You may wonder how the stems did not break when the weight was added. Galileo was the first to record these observations, noting that bending is resisted in the outer layers, not the inner stem as some might think. Several studies have investigated this design, including F.O. Bower (1930) who compared plant stems to concrete, saying, “Ordinary herbaceous plants are constructed on the same principle. The sclerotic strands correspond to the metal straps, the surroundin


g parenchyma with its turgescent cells corresponds mechanically to the concrete.” Equisetum (Horsetail) is another champion plant for many reasons, but here, in this context, it’s a biomechanic superstar.  “The hollow stem of Equisetum giganteum owes its mechanical stability to an outer ring of strengthening tissue, which provides stiffness and strength in the longitudinal direction, but also to an inner lining of turgid parenchyma, which lends resistance to local buckling. With a height >2.5 m isolated stems are mechanically unstable. However, in dense stands individual stems support each other by interlacing with their side branches, the typical growth habit of semi-self-supporters.” (Spatz, Kohler, Speck 1998). Again, plants are amazing.


After doing some mathematical calculations (very much estimated


The Lone Bloomer. The best-looking Goldenrod in the whole place puts out a flower for us!

in this case because of the imprecise nature of this ‘experiment’), it is expected that a single Goldenrod stem can support >118% of its biomass! Now, we’re not talking about the strength of steel or lead, but we can see that plants offer us new possibilities when we are designing or constructing new things! Imagine a support feature that is hollow inside and allows for storage in the “stem” as well has having the strength to support weight. Think on a smaller scale: imagine a space in which a stiff, lightweight outer covering is needed to secure something. Imagine the many possibilities that plants offer us to grow using Life’s Principles.




Graphical representation of the meadow plot using InDesign. I’m still learning how to use this new software and have also created a “worm’s eye view” to show a different perspective. Yellow stems are the goldenrod, the purple and lavender stems are Indian grass (single stems and clumps).


5 Nature Lessons About Being an Entrepreneur

Last week I had the pleasure to submerge myself in the rainy, flat, yet beautiful landscapes of the Netherlands.

Dunes of Loon and Drunen National Park, Netherlands

Together with about 25 others we spend a week to learn more about how Biomimicry Thinking can be applied to Social Innovation, a workshop given by Toby Herzlich and Dayna Baumeister. My personal interest in entrepreneurship made me question: “What can we learn from nature about being an entrepreneur?”

Yes, nature has entrepreneurs too, they are called pioneer species. Fireweed, a pink flower that appears as first after a huge forest fire, is one example. They are the species that are the first colonizers of harsh environments and are the drivers for ecological successions that ultimately lead to a more biodiverse and stable ecosystem.

1. You should not strive for a perfectly balanced Work/Life

Almost daily a new article appears in which tips are exposed to obtain a healthy work/life balance. Well, if we follow nature’s advice, we could keep trying to find it, but in nature there is no such thing as a “balanced” state. Although the overall appearance might seem in balance, the truth is that this is the result of a dynamic non-equilibrium or a constant flow of states to come as close as possible to equilibrium. One of the main reasons: (natural) disturbances will occur, no matter how hard you try to avoid them.

So, what is the best way to cope with this “stress” of having to deal with (unexpected) disturbances that throw you in unbalance? One is most resilient when being a “generalist” rather than a “specialist”; or in other words: don’t try to be extremely good at one specific thing.

Translating this to ourselves: If work becomes so dominant that you develop your personal skills almost only in your field of work (e.g. becoming extremely productive at managing your work, or being an uber smart coder — usually “hard” skills), you will have a very hard time to enjoy your non-work life (e.g. spending a relax time with your family — usually “soft” skills). Nature’s advice is to develop both your hard and soft skills so that you more easily can adapt to either your work-self or your life-self.

By the way: just the fact that we call them “work” and “life” is already a sign that something is totally wrong. You should be alive at work.

2. As a pioneer you usually grow fast and die young

Perhaps the most shocking news from nature: as a pioneer you only have a very temporary role to play. You are the one to appear as first since you are able to withstand those harsh conditions that others can’t. You can withstand the hard winds, the low nutritious soil, or the high currents. Even better, you thrive in them, making you grow fast and reproduce in high amounts. Together with your peers of pioneers you will change the conditions of your environment, you are making them more accessible for others to come and stay. But as soon as they have arrived, your role is to leave space for them, and find a new, underdeveloped area.

Seems like there is a good reason why you see so many serial entrepreneurs. If you are good at seeing new business opportunities and making them viable, perhaps your role should be just that. Why stay at one place and try to compete with the next generation (e.g. managers, CEO’s)? Can you accept that others are better at growing your business idea?
If so, you might have found your best talent and will enjoy to plant many new seeds and let them be grown by others.

3. Your pioneering role is to create conditions for the next generation

As a pioneer you are the first to colonize, but you are not there to stay. Being able to thrive in harsh conditions your job is to fix the sand or soil, to make nutrients more accessible, to enrich the soil, to create shelters from hard winds, etc. Suddenly other species will find out that the harsh conditions changed, and became viable to them. They will start settling and as they are better in other things than you, for example they need less resources or they are better at making friends (called mutualistic relationships in nature), they will take over. The end stage of ecological successions is a stable, biodiverse ecosystem, like the redwood forest and coral reefs.
Change in nature is accepted as a good thing.

4. You have two different ways to impact your environment

Apparently there are two ways a pioneer can change its environment:
i) change the environment directly; e.g. a beaver that builds dams will cause changes in the river flow,
ii) change itself, which indirectly affects the environment; e.g. coral needs CO2 to grow, taking it from the sea water thus creating a CO2-poor environment around the corals.

How can we apply this to ourselves?
As an entrepreneur you can introduce a new product into the world, which creates an entire new market. Think cars, mobile industry, and computers.
Or you can change yourself, affecting your environment. Examples that come to mind are: Not believing that the world is flat, literally throw our world upside-down. Or the fact that industry is now becoming more and more circular thanks to those thought-leaders that couldn’t accept our linear thinking and realized that “waste” doesn’t exist.

In both cases, what you are doing is preparing the environment to attract followers that usually will take over and be the ones to make the actual long-lasting change. If your startup doesn’t make it into a real company, that doesn’t mean you failed. On the contrary: you set a new stage for others that are perhaps better at running a big company, but you sure made a difference!

5. You should know what kind of messages you are sending and to whom

You come home after a long day, are hangry and your partner is in the sofa watching a TV show. You mumble to yourself “pfff why haven’t you made dinner yet!” and start cooking with a grumpy face. After 10 mins you are so angry and yell, “HEY, I’m home! Why haven’t you made dinner yet? I’m starving!”. Your partner stands up from the sofa, and says: “I made dinner for us, it’s in the oven and the table is set outside.”

Familiar? What happens is that you are sending messages that aren’t perceived by the other. Although you might think your partner heard you mumbling, he probably hasn’t. As he is watching an interesting TV show he didn’t even noticed that you were so hungry. He already knew dinner would be ready in 15 min but didn’t realize he should have told you.

There are many great examples in nature where a specific message is perfectly aligned between the sender and the receiver. Flowers not only send out a yummy smell to attract bees, they also have a beautiful UV pattern that shows them the way to their nectar. We as humans don’t see UV so these patterns/message would be totally useless if it were to guide us.

Next time your message isn’t being acted upon, ask yourself: “Who is my receiver, and which message is the most clear for them to understand what I need?”

Further Readings — Inspiring books

  1. The Nature of Business: Redesigning for Resilience — Giles Hutchins
  2. Biomimicry: Innovation Inspired by Nature — Janine Benyus
  3. Resilience Thinking: Sustaining Ecosystems and People in a Changing World— Brian Walker PhD
  4. Business Ecology: Giving your Organization the Natural Edge — Joseph M Abe
  5. All I Need To Know About Business, I Learned From a Duck — Tom Porter


This post was originally posted on Medium.com


We’ve done much damage to our planet. We’ve cut down trees. We’ve used pesticide and fertilizer chemicals on our soil and plants. The good news is this: the planet was designed to heal itself. To first begin, we need to help. I believe we can use bioremediation to fix some of the environmental problems we have created and as a preventative mediation for future issues. Continue reading

Abstracting and Adapting

Hello Readers,

Thank you for continuing to follow us, the biomimicry fellows, as we continue to probe the depths of nature’s solution manual in search of sustainability. I find it a little ironic that I had the privilege to kick off the school year and now I will be closing out the first semester for the new biomimicry fellows. Over the last fifteen weeks we have been endeavoring to discover more about this thing we call biomimicry. I’d like to take a second to share a few of my thoughts that have been shaped this semester. Continue reading

Project Wild Thing

Hi germiNature readers,

Nature is the key component for Biomimicry, but have you struggled convincing yourself, your children or your friends to go out in nature more often? Do you feel like people think you are a hippie because you love nature so much?


Project Wild Thing (click to see trailer) is the documentary for you. In the film, David Bond, Marketing Director for Nature, takes on the task of convincing people to get outside. As a worried dad seeing his children becoming addicted to TV and games, rather than playing outside, he tries to promote nature again. The film explores the increasing disconnection between British children and the natural world around them.

Although many children think nature is boring and unattractive, the film shows that this idea can easily be changed. However, one of the main challenges of getting this change to happen falls in the hands of the parents themselves. They worry about letting their children outside; kids are being overloaded by homework; and parents are becoming lazy themselves – they’d rather let their kids watch TV than go play in a forest with them.

This realization should be interesting for parents in general and a biomimicist, in particular. I’m going to float three here…

– With the support of branding and marketing, nature could once again be a popular ‘free product’ for kids. Less waste, less money, more playful area.

– Letting your kids be active at a young age should support an active lifestyle as an adult. It’s easily accepted that you are healthier, happier and more productive when you are active. Additionally, playing in nature provides many different sensory experiences that promote brain development, which are just not replicable with virtual play.

– A big and frankly terrifying question is what might happen if a generation becomes completely disconnected from the natural world… This goes back to the “Ethos” of Biomimicry. You care for things you love. But you can only treasure nature if you have had great interactions with it.

Message? Stop staring at your computer screen and act. You can start by looking at his website: https://projectwildthing.com (oh no, wait, that’s requires you to sit at your computer…but still go have a look when you have time).

Universal urination duration in mammals

Nature is a source of all kinds of inspirations, some more original than others. This one I found very exceptional and so I thought: “Lets share it on our blog!”
At Georgia Tech (George Woodruff School of Mechanical Engineering and School of Biology) they have been studying how fast animals urinate…yes, how they pee. They found out that all animals weighing more than 6.6 pounds (3 kg) urinate in 20 seconds, on average. So an elephant (18 L bladder capacity) urinates in the same amount of time as a cat (5 mL bladder capacity). It all has to do with the length of their urethra: Larger animals have longer urethra, which increases flow rate because of higher pressure. An elephant urinates the same volume per second as five showerheads. Can you imagine standing under a peeing elephant?

dog_peeing_klein-749915 2124279454_4416a1e0e5

This study disproves a previous hypothesis that urinary flow is controlled by bladder pressure generated by muscular contraction; and instead suggests urination is powered by the force of gravity rather than external pressure.
They demonstrated the feasibility of this by showing that a teacup, quart and a gallon of water emptied at a same rate, using varying lengths of connecting tubes. This is an interesting insight that could inform liquid dispensing systems, as it’s not the capacity of the tank that determines the dispensing rate, but it’s the connector tube. Any ideas?

Cool, right? I just have one remark. I think humans are an exception – I still hold the record of longest urinator with my 1 minute 43 seconds… but maybe it’s just me who can’t do it in 20 seconds.

Link: http://www.news.gatech.edu/2014/06/30/study-animal-urination-could-lead-better-engineered-products
Journal reference, published in PNAS: Duration of urination does not change with body size – Patricia J. Yanga, Jonathan Phama, Jerome Chooa, and David L. Hu