Category: Biomimicry Applications

Part 3: Biomimicry for coastal protection

About 40% of the world’s population lives within 100 kilometers of a coast and that number continues to increase. We all know too well the challenges and hazards associated with this trend.

As described in Part 1 however, we exacerbate the coastline’s natural resilience to storm surges, high wind and waves as we continue the ‘domino effect’ of erosion and shoreline armoring. We build harbors, marinas and other public access points to the water as well as protective structures to calm the waters near those access points, but that causes adjacent downdrift shoreline erosion. That affected shoreline, in turn, then requires armoring to mitigate the wave energy directly breaking on its shoreline.

How do we break this cycle? What is the balance between human activities in and along Lake Erie and natural processes? Do human activities directly oppose natural processes or can we find a synergistic and regenerative relationship?

Much of this topic was covered in Biohabitats’ Summer Solstice 2017 issue of Leaf Litter. The theme was Restoring Ecology Along the Urban Waterfront. I encourage you to check out the issue here. I even contributed an article entitled “Ecological Restoration Toolkit for the Urban Waterfront.” Many of the current solutions that Chris Streb mentioned in his presentation at the Biomimicry Open Innovation Session were covered in that article.

I’ll touch on a few solutions today, but I encourage you to check out the included links for more information.

ShoreSections_All_AreaLabels_600-002SM

Visualization of a natural, industrialized and reimagined shoreline by Biohabitats – featured in their Summer Solstice issue of Leaf Litter

 

I love the above visualization from Biohabitats. This image shows the potential of balance between the natural and industrialized coastline. Try to find all the additional green space in the reimagined photo!

The reimagined photo shows a couple of elements. One element is the floating wetland in the waterfront channel. Floating wetlands (FWs), an ecologically engineered technology, represent an effort to mimic the wetlands and marshes that existed long ago along our freshwater and marine shorelines. FWs hold the promise of returning ecological services like pollutant uptake and transformation, water quality improvement, wave attenuation, habitat, and aesthetic beautification. Biohabitats has deployed or studied floating wetlands in locations such as Jamaica Bay, NY, Potomac Yards in Washington, DC, and Orleans, MA.

Floating wetlands

Floating wetland – provided by Chris Streb, ecological engineer at Biohabitats

Floating wetlands work best in calmer waters however, generally near bays, marinas and harbors.

Higher energy environments are tougher, but wave energies are significantly reduced by underwater structures. These structures can be natural like sandbars or created elements such as living breakwaters constructed from oyster shells and spat, ECOncrete armoring units or Biohut breakwater units by Ecocean.

Oyster-ball-at-Gerritsen-Creek

Spat set on oyster ball ready to be deployed at Gerritsen Creek- originally featured in Biohabitats’ Summer Solstice issue of Leaf Litter

Another element shown in the reimagined photo above is a submerged structure attached to the seawall. This structure is related to a project I mentioned yesterday in Part 2: the “greening” of the bulkheads along the Cuyahoga River shipping channel. Biohabitats completed a project with the Cuyahoga County Planning Commission (CCPC) designing, installing and evaluating hexagonal steel casing structures attached to existing bulkheads (or seawalls) filled with various habitat-supporting materials such as bioballs, sticks and brushes. Six-month testing showed that all designs accumulated a biomass layer and small organism attachment and proved durable within the channel.

Securing-Bio-Balls-1

Securing bioball baskets – originally featured in Biohabitats’ Summer Solstice issue of Leaf Litter

Green bulkheads

Successful installation of hexagonal structures along the bulkheads – provided by Chris Streb, Biohabitats

Many of these solutions use natural materials and attach to existing protection structures or exist as separate elements. If we look back at the potential areas of focus explored during the Biomimicry Open Innovation Session, one focus was materials. What if instead of natural material (woody debris and vegetation) versus built material (rock, cement and steel), we considered a third category of material? Alternative, biologically compatible materials that offer both functional and ecological benefits? What would that look like?

What if we used the principles of wave dissipation from a kelp forest or freshwater marsh or the principles of connectivity, hierarchy and material composites in a coral reef to design our coastal protection structures?

These questions and more will be the focus of my PhD research, and I will continue to share updates with you in future blog posts! Have more ideas? Comment below and I hope you enjoyed this three part introductory series!

Additional References:

http://www.un.org/esa/sustdev/natlinfo/indicators/methodology_sheets/oceans_seas_coasts/pop_coastal_areas.pdf

The featured image is a wetland restoration at Freshkills Park in New York City. More information about the restoration project can be found here:

http://www.biohabitats.com/projects/freshkills-park-north-park-wetland-restoration-design-construction/

Advertisements

Part 2: Biomimicry for coastal protection

Yesterday, I ended the blog post with a question: How does the disconnection of the land-water interface by hard coastal protection structures and other shoreline disruptions affect ecological processes and biological life cycles?

I will just touch on some information regarding how altered shorelines of both rivers and lakes affect fish populations as an indicator of water quality and health for aquatic ecosystems. This topic was the focus of our second introductory presentation at the Biomimicry Open Innovation Session described in Part 1. I recognize that fish are just one aspect of a healthy aquatic habitat. There is also aquatic vegetation, benthic macroinvertebrates, phytoplankton & zooplankton communities and algae populations to consider. All these populations are linked and comprise the complex food web of Lake Erie, although the food web is much less complex with the presence of invasive species disrupting various points in the food web.

Before summarizing our second presentation given by Scott Winkler with the Division of Surface Waters of the Ohio EPA in Northeast Ohio, I’d like to show an image depicting the life cycle of freshwater fish species.

Freshwater fish life cycle

Life cycle for freshwater lake species in Europe

This image comes from a final project report on “greening” bulkheads in the shipping channel of the Cuyahoga River that my sponsor, Biohabitats, led a few years back. At the time though many local area fish biologists were consulted for the project, there was not a life cycle diagram for freshwater fish in the Great Lakes, particularly Lake Erie.

It is known that larval and juvenile fish experience high attrition rates within the channel during spawning and development, especially the last five miles of the Cuyahoga River from the ArcelorMittal steel mill to the mouth of the river. Jane Goodman, Executive Director of the Cuyahoga River Restoration, referred to this part of the river as a “23-foot deep, steel-walled bathtub” in a September 2015 article posted on Cleveland.com.

The availability and diversity of food for fish within the channel is very limited as well as natural microhabitats that provide shelter and cover like the interstices of rocks, dendritic roots and overhang nooks. Because of the depth and width of the shipping channel created for the shipping industry, the dissolved oxygen levels are a low because of the slow flow of the water to the open lake. In the September 2015 Cleveland.com article, it was noted that it took young fish 14 days to swim from the top of the channel to the mouth of the river because of the stagnant water.

I mention the conditions of the last few miles of the Cuyahoga River before the open lake because it is important to consider habitat requirements of all aspects of an aquatic species’ life cycle in restoration practices.

Scott’s presentation during our Open Innovation Session just focused on the makeup of the nearshore fish population along different points of the Ohio Lake Erie shoreline. What did he find?

What are our nearshore fish populations?

Scott described the fish sampling locations along the nearshore all along Ohio Lake Erie’s coastline and the type of fish sampled. He showed the below chart, which shows five distinct fish assemblages that emerge when fish sampling data from 1982-2015 is compared for similarities of species by weight.

Five groupings of fish

Five groups emerged when fish samples from 1982-2015 were compared to each other for species similarity by weight – provided by Scott Winkler, Ohio EPA

Group 1 is a diverse assemblage with many fish that require different habitats, which includes rock bass, brown bullhead, bluegill, round goby, largemouth bass, common carp, white perch, rainbow trout, walleye, golden redhorse, gizzard shad and emerald shiner. Group 2 is also diverse, but contains species that are more tolerant of water quality and site conditions, such as turbid or muddy waters. These tolerant fish include smallmouth buffalo, yellow bullhead, orangespotted sunfish, bigmouth buffalo and white crappie. Group 3 consists of species ubiquitous to Lake Erie and are likely to be found in any sample anywhere. Those fish are emerald shiner, white perch and gizzard shad. Group 3 also consists of species that are generalists and are tolerant of pollution and environmental factors such as, common carp, largemouth bass, freshwater drum, and bluegill.

Freshwater drum

Freshwater drum (a less desirable species) – provided by Scott Winkler, Ohio EPA

This fish group is only slightly better than Group 4. Group 4 is just those species found anywhere in Lake Erie. These species do little to explain the conditions of the sampling location. Group 5 is a combination of Groups 3 and 4, but with additional complexity by the presence of benthic insectivores (i.e. bottom-feeding insect-eaters) such as, golden, black, and shorthead redhorse. The following images show which groups of fish are present along the fish sampling locations along the coastline.

Western shoreline ecological groupings

Western Ohio Lake Erie shoreline – ecological groupings of fish species – provided by Scott Winkler, Ohio EPA

Ignore the numbers on the map and only focus on the color coding for each fish group 1-5. On the western half of the shoreline, Group 1 is found primarily around the Lake Erie Islands off Sandusky and the Black River Harbor of Lorain. These areas often have clear water and submerged aquatic vegetation. Group 2 is found only in Sandusky Bay, Maumee Bay, and the Portage River: areas that are often turbid.  The samples on the open lake shore are only Groups 3, 4, and 5.  Higher energy shorelines have higher energy fish populations- i.e. Groups 3, 4, 5. On the eastern half of the shoreline, Group 1 is confined to the harbors. Group 2 is found in the Cuyahoga River at Cleveland Harbor and found once in the Grand River at Fairport Harbor. Groups 1 and 2 are found in calmer waters even without the presence of vegetation.

Eastern shore ecological groupings

Eastern Ohio Lake Erie shoreline  – ecological groupings of fish species – provided by Scott Winkler, Ohio EPA

Keep in mind that these fish assemblages include invasive species and that the groupings do not take weight into account as they are plotted on the map. Common Carp makes up one third of the weight of all the samples.  The top five species (common carp, freshwater drum, largemouth bass, quillback and small mouth buffalo) make up two thirds of the total weight of all fish in the dataset, indicating that these groups really aren’t all that diverse. To learn more about the different fish and minnow species in Ohio waters, ODNR’s Division of Wildlife Species Guide Index is a great resource. I also came across Fish Base. Just type in the common name of your fish, click USA or other relevant location, and you can find information about this species’ environment, distribution, suitable habitat, life cycle and many other details, including a list of tools, special reports, Internet sources and a list of various ecological indicators based on models.

Scott concluded his talk with two main points. The first was that turbid or murky waters affect fish populations the most. Murky waters also affect the persistence of submerged aquatic vegetation – both a food source and resting place for many fish – as the sediment in the water disrupts the depth in which light can penetrate through the water column. Stormwater and upland runoff from heavy storm events contribute to the murky waters of our nearshore, often found in our bays and harbors – where both human agricultural and urban (think: impervious surfaces) activities are most present.

His second point was that no one wants to swim in a washing machine. Which means, fish don’t like to hang out in high energy waters! While we can’t calm the waters of our entire shoreline, we can create pockets of calmer waters for both fish and to reduce erosion of our shorelines, if we design our shore protection structures from a systems ecology perspective rather than just a structural or functional engineering perspective.

My last and final part, Part 3, will focus on our last presentation from our Open Biomimicry Innovation Session, by Chris Streb – ecological engineer at Biohabitats. He focuses on current practices and solutions for coastal restoration that balance both traditional protection requirements of erosion control and human activities along the shoreline (recreation, shipping, residential) with the provision of aquatic habitat for all species in Lake Erie.

 

Part 1: Biomimicry for coastal protection

Back in late February near the start of my PhD, my sponsors were asked if they had an interest in organizing a Biomimicry Open Innovation Session for 2017. Similar to last October’s Open Innovation Session organized by former Biomimicry Fellow Emily Kennedy (now a graduate!) and her sponsor GOJO, the idea is to pose a challenge statement unique to your industry that is open to collaboration and biomimicry design thinking to seek potential solutions. These sessions leverage the regional biomimicry community with support from Great Lakes Biomimicry.

Following many planning sessions with my three sponsors (Biohabitats, Cleveland Water Alliance, ODNR) as well as Great Lakes Biomimicry throughout the year, the Innovation Session was held at the Great Lakes Brewing Company Tasting Room on Wednesday November 1st from 1-5pm. 26 people from 8 unique institutions participated with 10+ biomimicry models identified and abstractions generated!

Innovation Session group photo

Participants working on biological model identification and principle abstraction at the Great Lakes Brewing Company Tasting Room, credit: Christine Hockman, Great Lakes Biomimicry

The challenge statement was as follows: To incorporate habitat features into existing and/or new shore protection structures to provide aquatic habitat for targeted fish species and enhance ecological functions, benefits and services in both freshwater riverine and coastal environments

Three potential focus areas were given:

  1. Structure: Alter structure to absorb or dissipate instead of reflect or refract wave energy. Wave reflection & refraction result in altered sediment transport pathways along Lake Erie’s shoreline.
  2. Habitat utilization: Nursery habitat for larval and young fish, habitat refugia that provide hiding places and protection against predators, feeding habitat for foraging fish.
  3. Materials: Soft structures utilize natural materials, like woody debris and vegetation, while hard structures are comprised of rock, cement and steel. Consider alternative, biologically compatible materials that offer functional benefits. Or, offer a solution between hard and soft structures or a structure that can be a combination of both hard and soft materials.

Throughout this week, I have prepared a three-part series (Tuesday through Friday morning) to share the content from the introductory presentations given at the start of the Innovation Session. I am presenting all this information for a few reasons. First, for those who didn’t attend to learn about what was presented and discussed. Second, for all those who follow this blog to learn more about the background behind my PhD thesis. 2018 (Year 2) is coming up for me already, which means a hopeful thesis proposal defense by the end of Year 2!

The three presentations were:

  • Characterization of the Ohio Lake Erie shoreline through the lens of coastal protection – Jim Park, ODNR Coastal Engineer (Part 1)
  • Aquatic habitat for targeted nearshore and open fish populations of Lake Erie – Scott Winkler, Ohio EPA Division of Surface Waters (Part 2)
  • Coastal restoration: Project examples of coastal protection and ecological function – Chris Streb, Biohabitats Ecological Engineer (Part 3)

Part 1: Characterization of the Ohio Lake Erie shoreline through the lens of coastal protection

What is a shore protection structure?
Jim gave many examples, which included revetments, seawalls, groins, breakwaters and beach.

Revetments are typically composed of large, rough, angular rock on a slope that dissipates wave energy on both the slope and rough surface. Revetments typically protect the foot of a cliff or a dune, or a dike or seawall against erosion by wave actions, storm surge and currents.

Revetment example

Example of revetment – provided by Jim Park, ODNR

Seawalls are vertical structures at the land/water interface designed to prevent erosion and storm surge flooding. They are made of concrete block, cast-in-place concrete or steel sheet pile. Seawalls reflect wave energy; they do not dissipate. Seawalls provide easy access to the water by boats docked along the wall. Steel sheet pile seawalls are almost exclusively used along the mouth of the Cuyahoga River in downtown Cleveland for transportation of goods by freighters and for recreational boaters to dock by restaurants along the water.

Seawall example

Example of seawall – provided by Jim Park, ODNR

Groins are shore-perpendicular structures made of stone, concrete or sheet-pile. They are effective in beach protection and had widespread past use in Ohio. If you are familiar with the Cleveland coastline, there are a few stone groins at Edgewater Beach and a few being installed at Perkins Beach currently!

Groin example

Example of groin – provided by Jim Park, ODNR

Breakwaters can be submerged, off-shore or connected to the land and are made up of large stone. They are designed to reduce wave action. Breakwaters are usually built to provide calm waters for harbors and marinas. Submerged breakwaters are specifically built to reduce beach erosion. A beach is typically formed or retained on the landward site.  They may also be referred to as artificial “reefs.”
If beaches are there, they are the most natural and effective form of shore protection.

Concrete rubble

Eastern Cuyahoga and Lake Counties – concrete rubble

The Ohio shoreline of Lake Erie is one of the most developed and structurally protected of the Great Lakes. Structural protection began in the early 1800s with the development of harbors, but any protection structure caused adjacent downdrift shoreline erosion. The affected shoreline, in turn, then requires armoring to mitigate the wave energy breaking directly on the shoreline rather than dissipating along the beach. As the Lake Erie Commission explains in their 2004 State of the Lake Report, “This ‘domino effect’ of erosion and shoreline armoring continues to this day.”

These shore protection structures have limited natural habitat value and alter coastal and hydrologic connections that in turn affect ecological processes and biological life cycles. On the mainland shore of western Lake Erie, the current coastal protection structures are not favorable to the nearshore biological community in both structure type and composition.

We know that coastal protection structures alter the primary mode of wave energy reduction; i.e. some reflect the waves back into the lake or refract the waves instead of dissipate. We also know these structures disrupt sediment (or the more technical term – littoral) transport pathways across the lake and many cause downdrift shoreline erosion. We also know they disconnect the land-water interface. How does this connection and other disruptions affect ecological processes and biological life cycles? We will touch on this question some with Scott Winkler’s presentation on nearshore fish populations tomorrow for Part 2!

Feel free to comment below or reach out to me on LinkedIn throughout this week if you have questions or ideas to contribute!

References:

Fuller, J.A., and B.E. Gerke. 2005. Distribution of shore protection structures and their erosion effectiveness and biological compatibility. Ohio Department of Natural Resources, Sandusky, Ohio.

[LEC] Lake Erie Commission. 2004a. State of Ohio, State of the Lake Report. Toledo, Ohio.

*Note- All shore protection structure photos were part of the presentation given by Jim Park on November 1st at Great Lakes Brewing Company Tasting Room. Permission was granted to share content and photos.

Plant Biomimicry: Response

Plant Biomimicry: Thigmotropism
Rebecca Eagle, November 13, 2017

Over the past three years in our program, I’ve had many opportunities to converse with interested folks about the wonders of plants. Plants do some pretty miraculous things, no doubt. At the very core of their existence, they are required to survive ‘in place’. How many other living organisms on Earth can claim this feat? Very, very few things can accumulate life’s requirements (reproduction and resource acquisition), without movement. Not to mention, plants also must adapt to local conditions: contamination, weather, drought/flooding events, and more. While animals, insects, and birds can move when their environment gets unfavorable, plants must shelter in place and utilize strategies that they’ve evolved over the millennia of time they’ve been on this planet.

A favorite plant of many inquisitors of plant biomimicry is the Venus Fly Trap (Dioneae muscipula). Why wouldn’t someone

Carnivorous "Venus Flytrap" plant in St. Gallen, Switzerland. Its Latin name is Dionaea Muscipula (Syn Dionaea Crinita), native to Carolina, USA.

Wild Venus flytrap. Photo by Adobe Stock, RukiMedia

admire this plant?! It eats meat, but cannot move from place because it lacks musculature and because it needs to stay rooted in the ground to obtain water, minerals, and necessary stability to stay erect. Many are surprised to learn that this insectivore is native to our own United States, found chiefly in wetlands of the Carolinas. Let’s discuss the biology of the Venus flytrap, and then talk about its inspiration for design applications.

 

Natural History
The Venus Fly Trap lives in nutrient-poor wetland soils, particularly low in nitrogen and phosphorus. Plants require these elements and all plants have strategies that allow them to acquire them from their environments—sometimes in very unique ways! Remember, though, that plants can’t move. They rely on things that are accessibly near them. Soil and the atmosphere being the mediums for most plants, cannot be relied on by the Venus flytrap. This constraint doesn’t faze it! Other organisms come to plants, right? Aphids, pollinators, nectarivores, and other critters visit plants for meals of all cuisines (vegetation and nectar), and this carnivorous plant evolved to capture the nutrients and energy from these insects to ensure its survival throughout time! (The first written documentation of the Venus Fly Trap was noted in 1760 in North Carolina, by North Carolina Colonial Governor Arthur Dobbs [1]). A question I am frequently asked is whether the plant does photosynthesis. Yes, the Venus flytrap does have the same anatomy and physiology required to be in the Kingdom Plantae. It is not uncommon to hear that they rely solely on insects for nutrients, but this is not true. Insects are merely the back-up mechanism for the minerals that a play would obtain from the soil, not the CO2 or sunlight energy obtained above ground.

Capturing Mechanism
We get it, the Venus flytrap eats insects for nutrients… but how? (Video: 4-minute YouTube video of Venus flytrap in action). When a larger-sized insect (flies, ants, spiders, grasshoppers, i.e.), lands on the inside of the leaf blade, the weight of it will eventually trigger minute hairs. These trigger hairs will respond (0.1 second response time), by closing the trap. Ideally, the prey will be inside, but, as you can see in the suggested video, this mechanism is not fail-safe. As is in nature and life, sometimes we lose the game.

Notice the trigger hairs on the inside of the leaf blades. Photo by Noah Elhardt.

The response of the trigger hairs is an example of a nastic movement and thigmotropism. Thigmotropism is the act of responding to the direct stimulus of touch, such as a fly landing on the inner leaf blade and bumping into one of the two or three trigger hairs. Nastic movements are controlled by hormones, more so than by a direct stimulus. Once the direct stimulus causes the thigmotrophic response, auxin (a plant hormone) stimulates cell expansion as a rapid growth response. In short, the cells inside the leaf of the Venus flytrap are told to swell up quickly, which causes the leaf blades to close. This is the same physiological response and movement that is witnessed when a flower of an angiosperm plant opens and closes in response to light! (As an aside, auxin does some pretty rad things in plants that I encourage you all to read about in your down time!).

Bio-inspiration from the Venus Flytrap
How could we not be inspired by this amazing plant?! I’ve talked in previous posts about some possible applications for designs based on the mechanisms of the Venus flytrap: baby gates, pet gates, sensors for factories, sensors for home safety, etc. I won’t rehash that conversation. The general idea involved here is the passive sensing with quick response that uses only clean energy.

While the response mechanism is certainly worthy of investigating, I would add in the importance of Life’s Principles as an additional means of bio-inspiration from the Venus flytrap. If we consider the rationale involved in utilizing insects for survival, we witness the ability of this natural organism to obtain its needs from the local environment in absence of the preferred mechanism for sequestration. As far as I know, the Venus flytrap isn’t shipping in her flies and spiders from the west coast. She has found a way to survive and thrive with what is near to and available to her. She is substituting a necessary product for another locally obtained product. She carefully considered her choices and chose to adapt and evolve, rather than die.

Of course I am getting a bit anthropomorphic here, but my goal is to encourage companies to look at the bigger picture of what is important to the planet, to its business, and to its customers. The amount of money and natural resources that are invested in product development could, perhaps, be re-evaluated to better meet the needs of the business by responsibly utilizing local supplies, rather than shipping them into the area. The re-evaluation might discover that the location of the business itself is better suited to be near the customers it most services—avoiding the strain of shipping far distances.

As I leave you, to spend more time preparing for my upcoming comprehensive exams, I would like to mention this quote I read in Botany for Gardeners (Capon, 1990). The preface of the quote describes the means by which antifreeze was developed, inspired by ‘leaf antifreeze’ (increasing the concentration of sugars in the protoplasm to lower the freezing point inside the cells). “Plants have been ahead of human invention by several million years[2].” Consider this as coming from a 1990’s book for gardeners, not for engineers, designers, or biomimicry-enthusiasts. This is written by someone who just appreciates plants for the value they bring to all of us in such a variety of ways. I encourage all of you to continue to read about the wonders of plants and be inspired by all the great things they do… all without leaving home!

VFT_distribution_map

The tiny section of the world that houses Venus flytrap. 

The habitat of the Venus flytrap is limited to a small area of the Carolinas. Modern development threatens this already minuscule area with increasing take-over. Consider visiting the website of The Nature Conservancy to learn more about the plant that Charles Darwin has called “the most wonderful plant in the world.”1

Venus flytrap

Venus flytrap in the wild. Photo by Adobe Stock, Simona

[1] The Nature Conservancy, accessed November 13, 2017. https://www.nature.org/ourinitiatives/regions/northamerica/unitedstates/northcarolina/explore/venus-flytrap-brochure.pdf?redirect=https-301

[2] Capon, Brian. (1990). Botany for Gardeners: An Introduction and Guide. Portland, OR: Timber Press. pp. 86.

Who doesn’t love going to a FAB conference!?

Last week was Spring break and we had this great opportunity of going and presenting in digiFAB conference in Boston about Biomimicry through one of my Sponsors TIES! Lots happened and I was excited to meet some great people in the field and had butterflies about my own talk. My excitement was doubled and butterflies gone with keynote speaker, Sherry Lassiter director of Fab Foundation, You can see her in picture below talking about different movements within Fab Foundation as well as the Fab network. IMG_8663

Dale Dougherty, then talked about Maker movements, I have been following Dale’s maker group (he runs the Make: which you can subscribe to) and was thrilled when he talked about  “Autonomous Boat [that] Went from California to Hawaii and Beyond”. I read about this project when first published in Make: and was happy that the boat had been picked up by a ship in New Zealand and was in display there.

The 2 day conference was packed by amazing talks, I like to shortly go through few of them.

FAB City A 40 year goal from Barcelona to empower citizens to be creators of their own city; “locally self-sufficient and globally connected”. For me, it seemed as a society that doesn’t need a centralized governing body, but where citizens create materials based on their needs, recycle when possible and are connected to many more cities around the globe.

FAB Cities

Tomas Diaz from FABCity also talked about the model and plans they have to reach this goal in Barcelona. he talked about POBLENOU where its supported by local and international community to become a FAB city.

IMG_8694

Rachel Ignotofsky; Women in Science , and the importance of design and arts in our life, how arts influences our perceptions and why is it important to use it in our learning kits.

3D printes, bluedragon made with business in mind, where you can print 4 colors in one product, you can mix different colors into one or just use one at a time: FIREPRINT. If anyone wants to put money together to get one, I am in! Check out their case studies, from combating Zika to cosplay, you can do all!

Second day  was nothing short of amazing talks as well, we first heard from Neil Gershenfeld, Director, MIT Center for Bits and Atoms, of his work on developing tools/processes for FABLAB, I did not see it coming where he talked about Nature! In below picture he was explaining how creating modules is similar to protein formation in our body. Neil

He also talked about how we are moving to Ubiquitous and with these changes, how his lab is working on developing the tools, materials, to functional part.

img_8746.jpg

And one of my favorites; Global Humanitarian Lab, talk by David Ott, Co-founder, Where they aim to bring FABKits (costing around < $10k) to refugee camps. David talked about what would be in the FABKits and how everything needs to be packed into container that could be transferred by 1 or 2 person. He talked about limitations, needs and potentials of these labs. He talked about makers/ people who need the opportunities we easily can access in our cities.

GHL

There was many more talks which I highly recommend attending. This year, there was an addition of having workshops and we had ours on Biomimicry in Artisan’s Asylum in Somerville. Another place to put in your places to go!

So What did we talk about! We talked on first day about Spiders and Ornilux, Tardigrades, Spikemoss and Stabilitech/Biomateria and How they relate to maker group! As we grow in FAB network and as we move toward FAB cities, Can we benefit from nature’s stories? Can we learn from 3.8 billion years of lessons? Our hope is to learn and make more sustainable decisions. Either in creating new FAB equipments, or materials used. We see a movement that will grow potentially in years to come and we want to instill biomimicry thinking in its foundation!

This slideshow requires JavaScript.

A week in the life of a new PhD fellow

Hello everyone!

My name is Elena Stachew and as of January 2017, I am the Biomimicry PhD Fellow for Biohabitats, Cleveland Water Alliance (CWA) and Ohio Department of Natural Resources (ODNR). Check out my biography here. Although every fellow’s schedule is unique, we each have to balance our time between sponsor(s), research and other program responsibilities. Though I am still learning the ins and outs, I thought I would give a better sense of what that balance can look like by describing my typical week as a new fellow:

  • Mondays & Tuesdays – Biohabitats office

Living in Cleveland, I love the start of the week as my commute is just to the opposite side of town, in Little Italy – University Circle. I haven’t started taking Cleveland’s rail line (RTA) yet, but I plan to soon in order to cut down on driving. Biohabitats Great Lakes Regional Office is housed in Murray Hill Galleries, an old school building converted into a hodgepodge of art galleries, boutique shops, law & architect firms, music studios and a yoga studio. I also enjoy being close to my alma mater, Case Western Reserve University, as I am able to meet former professors and colleagues for lunch on occasion!

On Mondays, Biohabitats has morning weekly staff meetings and in the afternoons, I have a weekly check in with Chris Streb, an ecological engineer and Bioworks team lead based in the Baltimore office, by phone. Bioworks is Biohabitats’ research, development and innovation arm, learn more here.

Only just shy of two months in, I take the days in the office to:

  • Review literature on ecosystem services and metrics,
  • Learn the Biohabitats consulting practice areas of ecological restoration, landscape architecture and regenerative design,
  • Talk with interested employees about their level of knowledge in biomimicry and active projects,
  • Explore Biohabitats Technical Resources library,
  • And read through my RSS feeds and Google alerts on biomimicry and other relevant topics.

If I find an article on biomimicry interesting and/or relevant, I post on Yammer – a Microsoft social network collaborative platform that Biohabitats uses.

My days involve a lot of reading and asking questions, and the first month involved several meetings with my three sponsors, but eventually, I’ll try my hand at applying biomimicry thinking to an active restoration, urban design or stormwater management project, post exploratory topics on Biohabitats Rhizome Blog or Leaf Litter quarterly newsletter, and host Brain Gardens and Walkabouts (Biohabitats terms for ‘lunch n’ learns’ and ‘end of the day brainstorming’ respectively).

I am also learning Biohabitats entire project process from client proposal submission to post-project monitoring in order to better understand how to add biomimicry as a value-added service. I was recently able to participate in an interview for the City of Cuyahoga Falls of Biohabitats design proposal for an ecological restoration project on Kelsey Creek.

I have also traveled some, to ODNR’s Office of Coastal Management in Sandusky and Biohabitats’ corporate headquarters in Baltimore, Maryland.

Biohabitats HQI snapped a few photos of their beautiful headquarters during my visit. One is shown here. There were so many plants; I immediately felt as if I walked into a botanical garden!

  • Wednesdays– Environmental Engineering Design & Biohabitats

Wednesday mornings, I have a class in Environmental Engineering Design at the University of Akron. The commute is 45 minutes to an hour. The class is about drinking water and wastewater treatment systems, and last week, I completed a group design project on a proposal for a groundwater treatment system of chlorinated solvents. I generally give myself an hour after class for any meetings scheduled with professors as I am still figuring out my adviser and advisory committee, then I drive back to Biohabitats to finish out the remainder of the work day. The last two weeks were an exception (hence the word – ‘typical’), as I needed more time on campus during the week to meet with my fellow classmates to work on this design project.

  • Thursdays & Fridays – University of Akron

Thursday afternoons, I have a class in Biomimicry Design & Application, where we are exploring bio-inspired ways to improve exercise equipment on long-term spaceflight missions in partnership with NASA Glenn Research Center’s Human Research Program. I come in late Thursday mornings to spend time on class readings and homework, meet with students in my classes for our design projects, as well as professors re: advisory committee and potential thesis topics.

Fridays, I have Environmental Engineering Design in the morning, followed by our afternoon Integrated Biosciences (IB) guest lecture series. I’ve heard interesting presentations on swarm intelligence, fish locomotion, architectural production using robotics and applied biomimicry. We are also able to participate in student lunches with our guest speakers before their lecture.

This past week, I helped organize the schedule of guest lecturer Julian Vincent, a retired professor from the University of Oxford active in the ontologies of biomimicry. See the following recent article for an overview of the topic: The trade-off- a central concept in biomimetics – published in 2016 by Bioinspired, Biomimetic
and Nanobiomaterials. I helped with the logistics of an all-day ontologies workshop followed by dinner, and a visit to Cleveland Institute of Art and discussion with Doug Paige, an industrial design professor and faculty partner in the Biomimicry Fellowship Program at the University of Akron.

As my schedule allows (which isn’t much!) and per my graduate student contract, I also serve as a QA/QC Contract Technician for the nuclear division of Five Star Products – a vestige of my former working life. The company manufactures safety-related concrete & grout products in Chardon, OH for nuclear power plants, for use in the construction of reactor bases, secondary containment and cooling towers.

I hope this gives you, the readers, a sense of how crazy yet exciting the life of a Biomimicry PhD Fellow can be! I am looking forward to the summer, in which I’ll have more time to spend with my three sponsors. The plan is to continue to explore potential thesis topics and learn how to connect my eventual thesis with my sponsor work program in the form of applied and practical research.

Look for more updates on this blog in the future, and feel free to connect with me on LinkedIn. Cheers and I look forward to the journey ahead!

Reflections from a guinea pig

I’m writing this blogpost, which will be my last on germiNature, still astonished that I defended my PhD work last week. Five years ago I embarked on this unknown journey as one of the three guinea pigs of this new PhD program in Biomimicry. A collaborative idea turning into a reality; Biomimicry being our mission and the glue for bringing people from all over the world together.

The desired outcome for a PhD student is being able to impact the field of study and contribute to its further development. Emily, Bill and I are publishing our dissertations in a couple of months, and it will be interesting to see how each of us completed the same goal with a different approach. But before jumping into a meta-analysis, I should first reflect on my outcomes.

drops-of-leaves-4-2

I have to admit that jumping is definitely a verb that describes me well. I don’t like to stay in the same place for too long. I started with the intention to take on a Biomimicry project from start to finish:

  1. Finding & understanding an interesting biological observation
  2. Abstracting biological principles into more general design principles
  3. Brainstorming and designing: Developing a biomimetic design
  4. Turning it into a commercial product

But it ended up quite differently…

My first 2, almost 3 years I spent on the first step, focusing on understanding UV reflection of avian eggshells. Many of my research efforts turned into dead ends. It wasn’t until I focused specifically on a fairly easy to distinguish characteristic of these eggshells (i.e. the cuticle, which is the outermost layer made from non-crystalized calcium carbonate and organic components) that I made advancements in biological understanding. The cuticle is at least one more factor that contributes to differences in UV coloration.

Being the kind of jumpy person that I am, and because of this slow and tedious process, I started losing my motivation and interest in really wanting to dig deeper and find the ultimate answers. I started taking on other projects, which were fueling me again to continue pursuing my PhD. These projects allowed me to also experience the other steps involved in a biomimicry process.

One project was to test if eggshells can be used to provide UV protection since chicken eggshells showed high reflectance in the same region of terrestrial solar radiation that is most harmful to biological (e.g. our skin) and synthetic polymers (e.g. building materials, paint). Our results, recently published in the journal Sustainability, showed that eggshell pieces indeed provide effective and durable photo-protection. However, future research is needed to investigate if eggshells in a more industrial format (e.g. ground into particles) will also provide high photo-protection. It’s important to note that turning a waste product (we create tons of eggshell waste per day) into a useful product is considered bio-utilization and not biomimicry. Not that one is necessarily better than the other, yet, making that distinction is important for identifying when one should consider pursuing the development of a mimic rather than using a natural product. In this case, since waste eggshells are readily available and are causing environmental issues (eggshell waste attracts rats to landfills), it makes sense to use it rather than a mimic.

Another project was to use natural models to inspire a biomimetic building envelope that reduces energy usage, especially by optimizing thermoregulation (step 3). Being exposed to the architectural design world was a real mind-boggler. Why don’t architects understand my explanation of the aestivation mechanism of the African reed frog? How would they implement this? What is an adaptive thermal comfort model and what does heat extraction mean? How will the biomimetic building envelope save energy?
We are currently reshaping our manuscript so that it will speak to a broad range of readers, and clearly explain how we used our natural models as design inspiration. Hope to share it soon!

During my PhD I discovered the fascinating aspects of entrepreneurship. I learned to identify customers’ needs and do market research. If nobody wants or needs your (biomimicry) product, no need to invest so much time and money in developing it. I had the exciting experience of co-founding two startups, one biomimicry-related and one PhD-problem related:

Hedgemon is an R&D startup, which is using the cleverness of the design of hedgehog spines to develop a new cushioning material.

Jaswig designs, manufactures, and sells height-adjustable and sustainable standing desks, which alleviates your back/neck aches from sitting too many hours behind your computer.

natures-beauty-42Besides all the joy of being involved in a startup, I also experienced a lot of loss in personal productivity and team collaboration due to misunderstandings or lack of communication. But frustrations = opportunity (yes, I’ve developed a business mindset)! I’m currently on a mission to learn from nature how we can communicate more effectively. It will need more digging and testing in real-life business settings before reaching publishable outcomes, but in the meantime you can read my attained insights on my blog “How nature says it”.

One more month to synthesize all of this into a dissertation document… Almost there! I hope that by sharing my experiences, challenges, concerns and research results I can show how formal education facilitates the development and practical use of biomimicry. Bill, Emily and I are the first batch of graduating Biomimicry Fellows, with many more to come! Curious to see what they will work on and how their PhD track unrolls.

And I guess this is a goodbye to you, readers of Germinature. Hope to have sparked some new ideas or questions, and I’m always happy to keep the conversation going! Reach out to me: daphne{at}fecheyr{dot}be. Thanks for reading.

La Plata Armadillo (Tolypeutes matacus)

 

Armadillo_ME_NASA

Rebecca Eagle-Malone holds “Chaco” the La Plata Armadillo. Evening reception, NASA and OAI Biomimicry Summit.

Earlier this month, August 2016, I had the privilege of leading an evening reception for the NASA and OAI Biomimicry Summit in Cleveland, Ohio. (OAI = Ohio Aeronautical Institute). A group of 60 attendees gathered inside the Primates, Cats, and Aquatics Building of Cleveland Metroparks Zoo as we engaged in a discussion of Biomimicry in Your Backyard. I selected three common backyard critters to demonstrate how easy it is to find inspiration in the spaces around us every day: La Plata Armadillo, Eastern Box Turtle, and Children’s Python. This week’s blog will feature our one and only “Chaco” the La Plata Armadillo (Tolypeutes matacus).

As we’ve discussed before, biomimicry is accomplished by two possible methods: 1) Start with a question and look to nature for a solution, or 2) Start with an inspiring organism and discover what problems can be solved using that particular structure or behavior. Working in the zoo setting, I typically start with the latter. Whether I am preparing for our Biomimicry/Ecophysiology class within our Advanced Inquiry Program through Miami University of Ohio and Cleveland Metroparks Zoo, answering a question from one of our educators while preparing a program, or speaking at an event for Great Lakes Biomimicry, this is the case. I am given an animal and I start my research. My starting point is generally: What makes this organism unique? It is in this uniqueness that inspiration jumps out at you! I encourage all of you to try this any time you have a moment outdoors to think. It is really amazing what a person can dream up once the trigger is pulled. We will start at this point with our armadillo inspiration.

hairyArmadilo

Hairy Armadillo has a soft carapace. Photo courtesy of Smithsonian

What makes an armadillo unique? Particularly, the La Plata Armadillo?  I would play the Jeopardy music in the background, but I don’t think it will take you that long to come up with the answer: the carapace. The scutes are hard dermal bone with keratin—very similar to a tortoise shell. La Plata, also commonly called the 3-banded armadillo, has a shoulder plate and hip plate with dermal hinges to allow flexibility. This is the only species of armadillo that is able to roll into a complete ball, courtesy of a head plate and armored tail. The Hairy Armadillo (Chaetophractus vellerosus) contrastingly, has a soft outer shell.

Armadillo

Tolypeutes matacus is the only species that can roll into a complete ball. Photo courtesy of Cleveland Metroparks Zoo

The carapace offers several advantages. Most obviously, perhaps, is protection. The La Plata Armadillo is nearly impenetrable when he rolls into a ball. The only predator that could possibly open this shell needs to have opposable thumbs. However, even with this advantage, most predators would find the benefit (food) is not worth the cost (time) it takes to open.  It also offers fortification measures by pinching the opposition in its hinges.

 

Another advantage of the carapace for this dweller of arid environments is thermal regulation. While all armadillos live in regions with temperatures between 92-97°F, the La Plata Armadillo can survive even hotter climates. One might think the shell would keep heat trapped inside the body, but the dermal hinges serve as climate control, allowing for air flow between the hinges.

Lastly, all armadillos have this really cool ability to travel across water. How?! They can hold their breath for really long periods of time. This allows them to walk on the bottom of riverbeds and waterways. What if they don’t want to walk? Like other mammals, they can suck in air and float across the water! Nothing can stop these guys from getting to the other side!

So I ask … what does the armadillo inspire in you?

5 Nature Lessons About Being an Entrepreneur

Last week I had the pleasure to submerge myself in the rainy, flat, yet beautiful landscapes of the Netherlands.

Dunes of Loon and Drunen National Park, Netherlands

Together with about 25 others we spend a week to learn more about how Biomimicry Thinking can be applied to Social Innovation, a workshop given by Toby Herzlich and Dayna Baumeister. My personal interest in entrepreneurship made me question: “What can we learn from nature about being an entrepreneur?”

Yes, nature has entrepreneurs too, they are called pioneer species. Fireweed, a pink flower that appears as first after a huge forest fire, is one example. They are the species that are the first colonizers of harsh environments and are the drivers for ecological successions that ultimately lead to a more biodiverse and stable ecosystem.

1. You should not strive for a perfectly balanced Work/Life

Almost daily a new article appears in which tips are exposed to obtain a healthy work/life balance. Well, if we follow nature’s advice, we could keep trying to find it, but in nature there is no such thing as a “balanced” state. Although the overall appearance might seem in balance, the truth is that this is the result of a dynamic non-equilibrium or a constant flow of states to come as close as possible to equilibrium. One of the main reasons: (natural) disturbances will occur, no matter how hard you try to avoid them.

So, what is the best way to cope with this “stress” of having to deal with (unexpected) disturbances that throw you in unbalance? One is most resilient when being a “generalist” rather than a “specialist”; or in other words: don’t try to be extremely good at one specific thing.

Translating this to ourselves: If work becomes so dominant that you develop your personal skills almost only in your field of work (e.g. becoming extremely productive at managing your work, or being an uber smart coder — usually “hard” skills), you will have a very hard time to enjoy your non-work life (e.g. spending a relax time with your family — usually “soft” skills). Nature’s advice is to develop both your hard and soft skills so that you more easily can adapt to either your work-self or your life-self.

By the way: just the fact that we call them “work” and “life” is already a sign that something is totally wrong. You should be alive at work.

2. As a pioneer you usually grow fast and die young

Perhaps the most shocking news from nature: as a pioneer you only have a very temporary role to play. You are the one to appear as first since you are able to withstand those harsh conditions that others can’t. You can withstand the hard winds, the low nutritious soil, or the high currents. Even better, you thrive in them, making you grow fast and reproduce in high amounts. Together with your peers of pioneers you will change the conditions of your environment, you are making them more accessible for others to come and stay. But as soon as they have arrived, your role is to leave space for them, and find a new, underdeveloped area.

Seems like there is a good reason why you see so many serial entrepreneurs. If you are good at seeing new business opportunities and making them viable, perhaps your role should be just that. Why stay at one place and try to compete with the next generation (e.g. managers, CEO’s)? Can you accept that others are better at growing your business idea?
If so, you might have found your best talent and will enjoy to plant many new seeds and let them be grown by others.

3. Your pioneering role is to create conditions for the next generation

As a pioneer you are the first to colonize, but you are not there to stay. Being able to thrive in harsh conditions your job is to fix the sand or soil, to make nutrients more accessible, to enrich the soil, to create shelters from hard winds, etc. Suddenly other species will find out that the harsh conditions changed, and became viable to them. They will start settling and as they are better in other things than you, for example they need less resources or they are better at making friends (called mutualistic relationships in nature), they will take over. The end stage of ecological successions is a stable, biodiverse ecosystem, like the redwood forest and coral reefs.
Change in nature is accepted as a good thing.

4. You have two different ways to impact your environment

Apparently there are two ways a pioneer can change its environment:
i) change the environment directly; e.g. a beaver that builds dams will cause changes in the river flow,
ii) change itself, which indirectly affects the environment; e.g. coral needs CO2 to grow, taking it from the sea water thus creating a CO2-poor environment around the corals.

How can we apply this to ourselves?
As an entrepreneur you can introduce a new product into the world, which creates an entire new market. Think cars, mobile industry, and computers.
Or you can change yourself, affecting your environment. Examples that come to mind are: Not believing that the world is flat, literally throw our world upside-down. Or the fact that industry is now becoming more and more circular thanks to those thought-leaders that couldn’t accept our linear thinking and realized that “waste” doesn’t exist.

In both cases, what you are doing is preparing the environment to attract followers that usually will take over and be the ones to make the actual long-lasting change. If your startup doesn’t make it into a real company, that doesn’t mean you failed. On the contrary: you set a new stage for others that are perhaps better at running a big company, but you sure made a difference!

5. You should know what kind of messages you are sending and to whom

You come home after a long day, are hangry and your partner is in the sofa watching a TV show. You mumble to yourself “pfff why haven’t you made dinner yet!” and start cooking with a grumpy face. After 10 mins you are so angry and yell, “HEY, I’m home! Why haven’t you made dinner yet? I’m starving!”. Your partner stands up from the sofa, and says: “I made dinner for us, it’s in the oven and the table is set outside.”

Familiar? What happens is that you are sending messages that aren’t perceived by the other. Although you might think your partner heard you mumbling, he probably hasn’t. As he is watching an interesting TV show he didn’t even noticed that you were so hungry. He already knew dinner would be ready in 15 min but didn’t realize he should have told you.

There are many great examples in nature where a specific message is perfectly aligned between the sender and the receiver. Flowers not only send out a yummy smell to attract bees, they also have a beautiful UV pattern that shows them the way to their nectar. We as humans don’t see UV so these patterns/message would be totally useless if it were to guide us.

Next time your message isn’t being acted upon, ask yourself: “Who is my receiver, and which message is the most clear for them to understand what I need?”

Further Readings — Inspiring books

  1. The Nature of Business: Redesigning for Resilience — Giles Hutchins
  2. Biomimicry: Innovation Inspired by Nature — Janine Benyus
  3. Resilience Thinking: Sustaining Ecosystems and People in a Changing World— Brian Walker PhD
  4. Business Ecology: Giving your Organization the Natural Edge — Joseph M Abe
  5. All I Need To Know About Business, I Learned From a Duck — Tom Porter

 

This post was originally posted on Medium.com

Plants Inspire Urban Design

Over the course of hundreds of millions of years our forest has evolved to become an intricate design of function and self-support. After researching anything and everything of plant evolution this week, I have become even more in love with these photosynthetic critters. There is much biomimicry to be learned from plants: urban design, architecture, engineering, and cooperation among individuals. Now, let’s talk plants!

First, the importance of community: herbaceous, shrub, and canopy levels are put in place to create a sustainable environment for each individual and the community as a whole. (For the sake of clarity, herbaceous layers are typically knee-high and below, shrub layers are knee high to five meters, and canopy layers are anything above five meters). Within each layer, there are different sizes, shapes, and colors that allow efficient flow of resources.

The colors of plants hamper the effects of sunlight, dependent on location of the plant. Dark leaves absorb more light than light-colored leaves. Consider the dark needles of the conifer. Known to be in areas where sunlight can be limited, the dark needles allow them to take full advantage of any sunlight they receive. The cactus, on the other hand, has no shortage of sunlight in the open desert. Typically light-colored, cactus stems reflect light, preventing them from scorching in the direct sunlight. Leaf size and shape differ among species, as well. Leaves with a higher surface area are directly related to increased cooling effects. Surface area is increased by features like prickles and hairs: cactus spines, roughness of an Ulmus leaf. Research has indicated that in urban shaded areas, there is an air temperature decrease of up to 2.5℃ and a surface-soil temperature decrease of up to 8℃ (1). Leaf and plant shapes are important in much the same way as color. Larger leaves are designed to absorb more light, but what is particularly interesting to this midwestern girl is the efficient shape of the cactus. The star shape, specifically, is linked to a more energy-efficient building design in architecture. There is less surface area to receive sunlight, this buildings require less air conditioning (less energy) to cool the building.

Biomimicry is using the plant communities for inspiration. Designing urban areas with community structure in mind seems to be on the mind of some city planners. In a forest, every ‘layer’ is utilized for the benefit of both the individual and the community as a whole. Waste is reduced because there is no waste. Every material is used in some way. This is just the structural level of urban design. There is a much deeper level that is being inspired by plant communities. The ecosystem services that they offer abound. Treehugger.com quotes Janine Benyus herself as saying, “The city would provide the same level of services as the forest next door.” In the interview, she also describes the ability of a city to “build fertile soil, filter air, clean water, sequester carbon, cool the surrounding temperature, provide biodiversity and produce food.” By city planners, engineers, and architects designing infrastructure in the same way and having a conscious use of materials, we may be able to reduce energy costs and limit heat islands. The prospect of inner cities being as aesthetically pleasing as a forest is an added bonus!

Continue reading