Plant Biomimicry: Response

Plant Biomimicry: Thigmotropism
Rebecca Eagle, November 13, 2017

Over the past three years in our program, I’ve had many opportunities to converse with interested folks about the wonders of plants. Plants do some pretty miraculous things, no doubt. At the very core of their existence, they are required to survive ‘in place’. How many other living organisms on Earth can claim this feat? Very, very few things can accumulate life’s requirements (reproduction and resource acquisition), without movement. Not to mention, plants also must adapt to local conditions: contamination, weather, drought/flooding events, and more. While animals, insects, and birds can move when their environment gets unfavorable, plants must shelter in place and utilize strategies that they’ve evolved over the millennia of time they’ve been on this planet.

A favorite plant of many inquisitors of plant biomimicry is the Venus Fly Trap (Dioneae muscipula). Why wouldn’t someone

Carnivorous "Venus Flytrap" plant in St. Gallen, Switzerland. Its Latin name is Dionaea Muscipula (Syn Dionaea Crinita), native to Carolina, USA.

Wild Venus flytrap. Photo by Adobe Stock, RukiMedia

admire this plant?! It eats meat, but cannot move from place because it lacks musculature and because it needs to stay rooted in the ground to obtain water, minerals, and necessary stability to stay erect. Many are surprised to learn that this insectivore is native to our own United States, found chiefly in wetlands of the Carolinas. Let’s discuss the biology of the Venus flytrap, and then talk about its inspiration for design applications.

 

Natural History
The Venus Fly Trap lives in nutrient-poor wetland soils, particularly low in nitrogen and phosphorus. Plants require these elements and all plants have strategies that allow them to acquire them from their environments—sometimes in very unique ways! Remember, though, that plants can’t move. They rely on things that are accessibly near them. Soil and the atmosphere being the mediums for most plants, cannot be relied on by the Venus flytrap. This constraint doesn’t faze it! Other organisms come to plants, right? Aphids, pollinators, nectarivores, and other critters visit plants for meals of all cuisines (vegetation and nectar), and this carnivorous plant evolved to capture the nutrients and energy from these insects to ensure its survival throughout time! (The first written documentation of the Venus Fly Trap was noted in 1760 in North Carolina, by North Carolina Colonial Governor Arthur Dobbs [1]). A question I am frequently asked is whether the plant does photosynthesis. Yes, the Venus flytrap does have the same anatomy and physiology required to be in the Kingdom Plantae. It is not uncommon to hear that they rely solely on insects for nutrients, but this is not true. Insects are merely the back-up mechanism for the minerals that a play would obtain from the soil, not the CO2 or sunlight energy obtained above ground.

Capturing Mechanism
We get it, the Venus flytrap eats insects for nutrients… but how? (Video: 4-minute YouTube video of Venus flytrap in action). When a larger-sized insect (flies, ants, spiders, grasshoppers, i.e.), lands on the inside of the leaf blade, the weight of it will eventually trigger minute hairs. These trigger hairs will respond (0.1 second response time), by closing the trap. Ideally, the prey will be inside, but, as you can see in the suggested video, this mechanism is not fail-safe. As is in nature and life, sometimes we lose the game.

Notice the trigger hairs on the inside of the leaf blades. Photo by Noah Elhardt.

The response of the trigger hairs is an example of a nastic movement and thigmotropism. Thigmotropism is the act of responding to the direct stimulus of touch, such as a fly landing on the inner leaf blade and bumping into one of the two or three trigger hairs. Nastic movements are controlled by hormones, more so than by a direct stimulus. Once the direct stimulus causes the thigmotrophic response, auxin (a plant hormone) stimulates cell expansion as a rapid growth response. In short, the cells inside the leaf of the Venus flytrap are told to swell up quickly, which causes the leaf blades to close. This is the same physiological response and movement that is witnessed when a flower of an angiosperm plant opens and closes in response to light! (As an aside, auxin does some pretty rad things in plants that I encourage you all to read about in your down time!).

Bio-inspiration from the Venus Flytrap
How could we not be inspired by this amazing plant?! I’ve talked in previous posts about some possible applications for designs based on the mechanisms of the Venus flytrap: baby gates, pet gates, sensors for factories, sensors for home safety, etc. I won’t rehash that conversation. The general idea involved here is the passive sensing with quick response that uses only clean energy.

While the response mechanism is certainly worthy of investigating, I would add in the importance of Life’s Principles as an additional means of bio-inspiration from the Venus flytrap. If we consider the rationale involved in utilizing insects for survival, we witness the ability of this natural organism to obtain its needs from the local environment in absence of the preferred mechanism for sequestration. As far as I know, the Venus flytrap isn’t shipping in her flies and spiders from the west coast. She has found a way to survive and thrive with what is near to and available to her. She is substituting a necessary product for another locally obtained product. She carefully considered her choices and chose to adapt and evolve, rather than die.

Of course I am getting a bit anthropomorphic here, but my goal is to encourage companies to look at the bigger picture of what is important to the planet, to its business, and to its customers. The amount of money and natural resources that are invested in product development could, perhaps, be re-evaluated to better meet the needs of the business by responsibly utilizing local supplies, rather than shipping them into the area. The re-evaluation might discover that the location of the business itself is better suited to be near the customers it most services—avoiding the strain of shipping far distances.

As I leave you, to spend more time preparing for my upcoming comprehensive exams, I would like to mention this quote I read in Botany for Gardeners (Capon, 1990). The preface of the quote describes the means by which antifreeze was developed, inspired by ‘leaf antifreeze’ (increasing the concentration of sugars in the protoplasm to lower the freezing point inside the cells). “Plants have been ahead of human invention by several million years[2].” Consider this as coming from a 1990’s book for gardeners, not for engineers, designers, or biomimicry-enthusiasts. This is written by someone who just appreciates plants for the value they bring to all of us in such a variety of ways. I encourage all of you to continue to read about the wonders of plants and be inspired by all the great things they do… all without leaving home!

VFT_distribution_map

The tiny section of the world that houses Venus flytrap. 

The habitat of the Venus flytrap is limited to a small area of the Carolinas. Modern development threatens this already minuscule area with increasing take-over. Consider visiting the website of The Nature Conservancy to learn more about the plant that Charles Darwin has called “the most wonderful plant in the world.”1

Venus flytrap

Venus flytrap in the wild. Photo by Adobe Stock, Simona

[1] The Nature Conservancy, accessed November 13, 2017. https://www.nature.org/ourinitiatives/regions/northamerica/unitedstates/northcarolina/explore/venus-flytrap-brochure.pdf?redirect=https-301

[2] Capon, Brian. (1990). Botany for Gardeners: An Introduction and Guide. Portland, OR: Timber Press. pp. 86.

Advertisements

Learn Programming with Bees, Balance, Biomimicry

I have been working on Biomimicry curriculum for STEM as part of my sponsor TIES – Teaching Institute for Excellence in STEM- work. Given my background in computer science, I was interested in teaching basics of programming to k-12 using biomimicry. Here is a summary of this project targeting grade 3-5, which is a collaboration with Emma Parker, Resident Teaching Artist of Dance, from Center for Arts inspired learning in Cleveland.

This program integrates the arts with coding and biomimicry. Interested in movement/dance throughout the natural world, students will explore the movement of bees for encoding and decoding of communication. Within working groups, students will have the chance to discover how environmental surroundings affect swarming techniques. Using the integration of the computer software Scratch and the basic movements of dance, students will code a dance to mimic a swarm of bees moving across particular terrains. Using Scratch, codes will be created to determine where the movements of each group will take them within the natural terrain of the predetermined map. Each group will create a program in Scratch to decipher these dance movements; here they will learn about simple programming techniques such as creating variables, conditional and repetition statements. This could be as a competition where each group has to figure out the other groups’ secret location through a coding questionnaire and observation skills.

Participants will…

  1. Understand emergent behaviors in nature
  2. Design techniques for coding using Scratch computer software
  3. Apply dance/movement techniques to mimic bee communication through biomimicry
  4. Develop code questionnaires to translate movements generated by biomimicry processes

Its a four 1-hour course, below is a summary of day schedules:

Day 1- Introduction of Biomimicry – Emergent Behaviors

Here students will explore swarming in nature and humans, through unpacking activities, they discuss emergent behaviors, at the end of 1 hour, students will work with pre-made kit of our lesson plan

Day 2 – Movement and Coding Exploration

Here students will learn ‘Variables’, ‘Sequences’, ‘Conditional statements’, ‘Repetition’ through dance movements and programming in scratch.

Day 3 – Building Code Questionnaire

Here Students will build out a code questionnaire in Scratch. The code questionnaire will build observation and critical thinking skills as students are asked to create question and answers that match their dance codes from the previous day.

Day 4 – Showcase, Observe, and Assess

Description: Showcase and test day. A perimeter that resembles the landscape of the nature interface created for the Scratch code will be replicated within the room. Groups will then enter the space and perform their dance codes. Groups not performing will determine through the questionnaire what landscape and final destination the code represents. Observation of movement sequence, variables chose, and repetition will factor into determining the final location of each group.

If you are interested, please check a draft of scratch code and let me know to send you final lesson plans when its done: https://scratch.mit.edu/projects/174432618/

Dead Fish Swim Upstream

Hi all, I recently passed through the crucible of Comprehensive exams. I have been studying a whole suite of topics for the last eight months or so most of which revolve around my research interests in how fish control their maneuvers.  One interesting topic that I looked into was how fish interact with their flow environments. I wanted to take todays post to do an expose on some really interesting work done by James Liao out of The University of Florida at Gainesville. What you’re about to read is an answer from one of my exam questions,

Dead trout can swim upstream. Now that I have used up my clickbait, here is a more technical description of what we will be discovering: A freshly killed trout can passively achieve forward thrust when towed in a Karman wake. To understand how this work first we must understand the hydrodynamics of a Karman wake. Water flowing past a bluff body (a log in a stream) alternately sheds vortices clockwise and counterclockwise. These vortices rotate inwards, toward the center of the wake and are offset as a function of the vortex shedding frequency and the velocity of the wake. Flow visualization shows an expanding wake with a zig-zag pattern of vortex cores with opposite signs.

Between two vortices, the rotation of each constructively interferes forming a jet between. This jet is oriented perpendicular to the angle between the path of the two vortices and the direction of flow. These jets are linked as each vortex shares two neighbors. The result is a jet with a component of upstream flow as well as oscillating lateral flow.

Live trout swimming in uniform flow have small lateral body displacement and body curvature is lowest at the head and increases toward the tail.

linearampenv

Body kinematics I use on a fish robot in the lab. The head is 1. tail is 5.

However, in a Karman wake the trout adopts a slaloming gait, exhibiting large lateral displacements and body curvature. The lateral flow described above generates the lateral body displacements and probably aids in generating the body curvature. The frequency of lateral body displacements matches the frequency of vortex shedding. The upstream component propels the fish forward. EMG tests from trout swimming in these Karman wakes show reduced muscle activation. The kinematics of freshly killed trout very closely resemble the kinematics of live fish. The body resonates with the frequency of the vortex shedding and allows the fish to hold station in the wake. These wakes can even provide enough thrust to move the fish upstream, all the way up into the suction zone directly behind the bluff body. Live fish have more control over this Karman gait. They can selectively apply drag to maintain station in the optimal region of the wake. They can also modulate body stiffness to match the resonant frequencies of their bodies to the frequency of the Karman wake.

 

20140702_171819000_iOS

This ones not dead just a beautiful example of a brook trout

 

 

I particularly like this example of fish locomotor behavior because it is shocking and counter intuitive. It recognizes that a locomotor control can be simplified by “programming” the material properties of the system, in this case the body stiffness. This example has implications for increasing the energy efficiency of aquatic vehicles. I could envision a system where the energy extracted by a fish robot swimming in a Karman wake could be used to charge its batteries, and redeploy without having to be retrieved from the water to charge.

fishrbt (2).jpg

A fish robot like the one I’ve built for my research could potentially be charged by gathering energy from flow features like karman wakes or wave energy.

 

Full citations and for further reading see:

Liao, J. C. (2004). “Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Kármán gait.” Journal of Experimental Biology 207(20): 3495-3506.

Liao, J. C., D. N. Beal, G. V. Lauder and M. S. Triantafyllou (2003). “The Karman gait: novel body kinematics of rainbow trout swimming in a vortex street.” J Exp Biol 206(Pt 6): 1059-1073.

Managing for Uncertainty: Undertaking a Resilience Assessment of the Lake Erie Coast.

The shores of Lake Erie conjure up a wide variety of mental images, from the Cuyahoga River catching on fire multiple times in the mid-20th century, to wide swaths of fish kill washing up on the beaches to now where there are stand-up paddlers, to kids swimming on the shores and building sand castles. The Lake Erie coastline and health of the waters have drastically improved thanks to heavy investment, progressive research on water quality, and policy implementation – all with the aim to improve the health of Lake Erie and the Lake Erie shoreline.

The Great Lakes hold roughly 20% of the world’s freshwater resources. We realize the important asset we have right in our backyard. River fires aside, we are now also beginning to understand the great responsibility we have in managing our assets well into the future. This will be a great challenge, however, as Lake Erie is one of the most stressed of the Great Lakes. The University of Michigan’s Great Lakes Environmental Assessment and Mapping (GLEAM) project shows the challenges we’re up against. This map shows 34 of 50 stressors, from nitrogen loading to invasive mussels. Things like rising temperatures, decreasing ice cover, and the increase of harmful algal blooms exacerbate the cumulative stress.

Screen Shot 2017-10-02 at 11.21.10 AM.png

Despite continued investment in local restoration activities, the stresses and resultant consequences (such as harmful algal blooms) remain persistent and ever-present. Speaking with state representatives recently, the frustration in the room was palpable; money seems to keep pouring into the Lake with investments, but we’re still dealing with the same problems we were ten, twenty, thirty years ago. It’s clear that a new approach is needed. Through the fellowship with the Cleveland Water Alliance; in partnership with the Ohio Department of Natural Resources, Office of Coastal Management; and Biohabitats, we’re taking measurable steps to move from local acts of restoration to a holistic approach to systematically linking the projects on a broader scale to leverage each individual project and deepen the impact of investment.

Last week, in partnership with the Cleveland State University’s Maxine Goodman Levin College of Urban Affairs and members of the Resilience Alliance, along with a range of stakeholders from government representatives to utilities to fishery managers, and academics, we undertook a two-day full Lake Erie coastline resilience assessment. The method involves analytically understanding parts of the system and constructing conceptual models to start identifying thresholds, feedback loops, and variables that can either undermine or contribute to the system’s general resilience.

A main element to start these discussions is understanding and identifying the scale. This is not an easy concept to nail down, particularly when we’re dealing with non-linear, constantly dynamic systems that don’t care about our political or administrative boundaries. Yet, we need to come up with a spatial scale so that our brains can both wrap our heads around the issues, as well as how it fits into our political and administrative boundaries (while still being aware of scales above and below our focal system, as well as also staying aware of cross-temporal scales). The aim is not to come up with immediate solutions, but to start thinking differently – systemically, and across boundaries, and continuously iterate the conceptual models and integrate the outcomes and/ knowledge outputs into policy – so that collectively, we can manage uncertainty and inevitable changes to Lake Erie.FullSizeRenderDr. Allyson Quinlan of the Resilience Alliance discussing conceptual models and feedback loops. 

This workshop took place over two days in Cleveland, Ohio. During those two days – at the end of September and officially in the fall season, we broke a heat record with 90F temperatures. Multiple area schools closed down for a day, while others dismissed early because of excessive heat.   With that backdrop to the discussion, it only solidified that we need to find an alternative path forward in our new climate reality if we are to be stewards and cultivate a healthy Lake Erie for future generations and ourselves.

NIEA Summit 2017

Great Lakes Biomimicry and the Ohio Aerospace Institute will host the “Nature-Inspired Exploration for Aerospace (NIEA) Summit 2017” from October 3-6 in collaboration with NASA. The summit will be held at the Ohio Aerospace Institute and will focus on biomimicry for aerospace applications.

More then 50 sessions are planned for the event and will be opened by a keynote presentation from biomimetics pioneer Dr. Julian Vincent. The summit will feature sessions from different researchers at NASA as well as from different universities across the US. A poster presentation is scheduled on October 5 where three of our Biomimicry Fellows (Elena Stachew, Kelly Siman and Sebastian Engelhardt) will talk about their research including topics such as “Biomimetic strategies to improve ropes for zero-G exercise machines” and “Aquaporin-based biomimetic membranes for waste water filtration in forward osmosis”. Furthermore, several networking events, such as a reception at the Museum of the Western Reserve in Cleveland’s Wade Oval neighborhood, are part of the agenda.

For further details and information take a look at the official summit website, where you can also register for the event. Registration will close on September 26.

Mental Health and Resilience

The connections between people and the outdoor environment are not always immediately obvious. It has been noted numerous times, for instance, that in periods of high stress or disaster people, specifically, and communities, in general, seek out and create avenues of sudden nature exposure, or, as it is termed by (Tidball, 2012), express “Urgent Biophilia.” Many communities forced into immediate distress by either natural or man-made disasters focus suddenly on greening a place through an increase in urban gardening, tree planting or other environmental stewardship. Numerous war veterans find relief in gardening. Gardening is also an established therapeutic activity for people who experience autism. (Louv, 2005). In short, high stress seems to bring out a need to connect or “…an affinity for other living things…” (Kellert and Wilson 1993).

As in the diagram copied below, Tidball proposes that the stress release creates a “back loop” (the green areas of the cyclic ribbon) in which those times during and just after the greatest stress are the times of the most urgent biophilia. He proposes further that conservation or environmentally-minded legislation (an investment in policies that protect the environment) tends to sit within those periods of community involvement. This space is where humans try to find direction to demonstrate resilience and adaption in times of crises.

Graph loop

That this demonstration of resilience is frequently expressed through nature exposure is worthy of note.

Nature Education vs Nature Awareness

It is a popular thought in environmental/ecology education that involving people in the outdoors gives them a real grasp of the nature of the environment and their place in it. In theory, it also gives learners a chance to develop numerous layers of higher level thinking, as supported by authors like (Spellman et al. 2015). While evidence of this, by and large, seems to be proven true by many, the ability to relate experiences of the (wild) outdoors to urban life frequently seems a difficult connection to make. Many environmental programs that take learners to the distant outdoors and far off farms find that, while on the individual level learners often make deep personal discoveries, the ecological/environmental connections in their daily life are not discovered. ‘Environment’ and ‘outside’ get termed far away and not ‘here‘, by urban learners. Many organizations have found, however, that exposing these same learners to the environmental community near them (i.e., local community gardens, park stewardship, urban waterway health monitoring and general urban environment/nature exploration) not only proffers an easy connection to self and environment but also promotes a sense of environmental responsibility and stewardship (Kransy and Tidball 2010).

Discussions and teachings about ecological/environmental learning benefit from an awareness that the types of connections people make with nature and the environment need to be proximate and pertinent to the world the learners live in. Otherwise ‘environments’ are seen as ‘out there’ and not as affecting the individual. Communities where environmental education programs are implemented and thoughtfully intertwined with local activity lead to better community/environmental stewardship.

This brief discussion is just meant to lightly illustrate that at our best we are creatures of our environment and our success/survival depends on keeping in mind where that environment/our safety net is. Divorcing ourselves from understanding that the environment is not just out there but right here cuts the strings to a significant resource in education and wellness, just under our feet.

Donate To Disaster Relief

 

Citations:

Kellert, S. R., & Wilson, E. O. (Eds.). (1995).The biophilia hypothesis. Island Press.

Krasny, M. E & Tidball, K. G., (2010). Urban environmental education from a social-ecological perspective: Conceptual framework for civic ecology education. Cities and the Environment (CATE), 3(1), 11.

(Louv, R. (2005). Last child in the woods: Saving our children from nature-deficit disorder. Algonquin Books.

(Spellman et al. 2015)

Spellman, K. V., Deutsch, A., Mulder, C. P., & Carsten‐Conner, L. D. (2016). Metacognitive learning in the ecology classroom: A tool for preparing problem solvers in a time of rapid change?. Ecosphere, 7(8).

Tidball, K. (2012). Urgent biophilia: human-nature interactions and biological attractions in disaster resilience. Ecology and Society, 17(2).

Bringing Biomimicry into Makerspaces

This post will expand upon Banafsheh Khakipoor and my experience at DigiFabCon (www.digifabcon.org) held in Boston, MA in March 30 – April 1, 2017. For those unfamiliar with makerspaces, they are a place where people with fabrication, computing or technology interests can gather to work on projects sharing ideas, equipment, and knowledge. The convention attendees were a mixture mostly composed of makerspace enthusiasts, educators, and professionals. DigiFabCon offered two days of lectures and a day of hands-on workshops held at local Boston makerspaces.  I will reflect upon my experience of bringing biomimicry into makerspaces in a practical manner.

Continue reading

Who doesn’t love going to a FAB conference!?

Last week was Spring break and we had this great opportunity of going and presenting in digiFAB conference in Boston about Biomimicry through one of my Sponsors TIES! Lots happened and I was excited to meet some great people in the field and had butterflies about my own talk. My excitement was doubled and butterflies gone with keynote speaker, Sherry Lassiter director of Fab Foundation, You can see her in picture below talking about different movements within Fab Foundation as well as the Fab network. IMG_8663

Dale Dougherty, then talked about Maker movements, I have been following Dale’s maker group (he runs the Make: which you can subscribe to) and was thrilled when he talked about  “Autonomous Boat [that] Went from California to Hawaii and Beyond”. I read about this project when first published in Make: and was happy that the boat had been picked up by a ship in New Zealand and was in display there.

The 2 day conference was packed by amazing talks, I like to shortly go through few of them.

FAB City A 40 year goal from Barcelona to empower citizens to be creators of their own city; “locally self-sufficient and globally connected”. For me, it seemed as a society that doesn’t need a centralized governing body, but where citizens create materials based on their needs, recycle when possible and are connected to many more cities around the globe.

FAB Cities

Tomas Diaz from FABCity also talked about the model and plans they have to reach this goal in Barcelona. he talked about POBLENOU where its supported by local and international community to become a FAB city.

IMG_8694

Rachel Ignotofsky; Women in Science , and the importance of design and arts in our life, how arts influences our perceptions and why is it important to use it in our learning kits.

3D printes, bluedragon made with business in mind, where you can print 4 colors in one product, you can mix different colors into one or just use one at a time: FIREPRINT. If anyone wants to put money together to get one, I am in! Check out their case studies, from combating Zika to cosplay, you can do all!

Second day  was nothing short of amazing talks as well, we first heard from Neil Gershenfeld, Director, MIT Center for Bits and Atoms, of his work on developing tools/processes for FABLAB, I did not see it coming where he talked about Nature! In below picture he was explaining how creating modules is similar to protein formation in our body. Neil

He also talked about how we are moving to Ubiquitous and with these changes, how his lab is working on developing the tools, materials, to functional part.

img_8746.jpg

And one of my favorites; Global Humanitarian Lab, talk by David Ott, Co-founder, Where they aim to bring FABKits (costing around < $10k) to refugee camps. David talked about what would be in the FABKits and how everything needs to be packed into container that could be transferred by 1 or 2 person. He talked about limitations, needs and potentials of these labs. He talked about makers/ people who need the opportunities we easily can access in our cities.

GHL

There was many more talks which I highly recommend attending. This year, there was an addition of having workshops and we had ours on Biomimicry in Artisan’s Asylum in Somerville. Another place to put in your places to go!

So What did we talk about! We talked on first day about Spiders and Ornilux, Tardigrades, Spikemoss and Stabilitech/Biomateria and How they relate to maker group! As we grow in FAB network and as we move toward FAB cities, Can we benefit from nature’s stories? Can we learn from 3.8 billion years of lessons? Our hope is to learn and make more sustainable decisions. Either in creating new FAB equipments, or materials used. We see a movement that will grow potentially in years to come and we want to instill biomimicry thinking in its foundation!

This slideshow requires JavaScript.

A week in the life of a new PhD fellow

Hello everyone!

My name is Elena Stachew and as of January 2017, I am the Biomimicry PhD Fellow for Biohabitats, Cleveland Water Alliance (CWA) and Ohio Department of Natural Resources (ODNR). Check out my biography here. Although every fellow’s schedule is unique, we each have to balance our time between sponsor(s), research and other program responsibilities. Though I am still learning the ins and outs, I thought I would give a better sense of what that balance can look like by describing my typical week as a new fellow:

  • Mondays & Tuesdays – Biohabitats office

Living in Cleveland, I love the start of the week as my commute is just to the opposite side of town, in Little Italy – University Circle. I haven’t started taking Cleveland’s rail line (RTA) yet, but I plan to soon in order to cut down on driving. Biohabitats Great Lakes Regional Office is housed in Murray Hill Galleries, an old school building converted into a hodgepodge of art galleries, boutique shops, law & architect firms, music studios and a yoga studio. I also enjoy being close to my alma mater, Case Western Reserve University, as I am able to meet former professors and colleagues for lunch on occasion!

On Mondays, Biohabitats has morning weekly staff meetings and in the afternoons, I have a weekly check in with Chris Streb, an ecological engineer and Bioworks team lead based in the Baltimore office, by phone. Bioworks is Biohabitats’ research, development and innovation arm, learn more here.

Only just shy of two months in, I take the days in the office to:

  • Review literature on ecosystem services and metrics,
  • Learn the Biohabitats consulting practice areas of ecological restoration, landscape architecture and regenerative design,
  • Talk with interested employees about their level of knowledge in biomimicry and active projects,
  • Explore Biohabitats Technical Resources library,
  • And read through my RSS feeds and Google alerts on biomimicry and other relevant topics.

If I find an article on biomimicry interesting and/or relevant, I post on Yammer – a Microsoft social network collaborative platform that Biohabitats uses.

My days involve a lot of reading and asking questions, and the first month involved several meetings with my three sponsors, but eventually, I’ll try my hand at applying biomimicry thinking to an active restoration, urban design or stormwater management project, post exploratory topics on Biohabitats Rhizome Blog or Leaf Litter quarterly newsletter, and host Brain Gardens and Walkabouts (Biohabitats terms for ‘lunch n’ learns’ and ‘end of the day brainstorming’ respectively).

I am also learning Biohabitats entire project process from client proposal submission to post-project monitoring in order to better understand how to add biomimicry as a value-added service. I was recently able to participate in an interview for the City of Cuyahoga Falls of Biohabitats design proposal for an ecological restoration project on Kelsey Creek.

I have also traveled some, to ODNR’s Office of Coastal Management in Sandusky and Biohabitats’ corporate headquarters in Baltimore, Maryland.

Biohabitats HQI snapped a few photos of their beautiful headquarters during my visit. One is shown here. There were so many plants; I immediately felt as if I walked into a botanical garden!

  • Wednesdays– Environmental Engineering Design & Biohabitats

Wednesday mornings, I have a class in Environmental Engineering Design at the University of Akron. The commute is 45 minutes to an hour. The class is about drinking water and wastewater treatment systems, and last week, I completed a group design project on a proposal for a groundwater treatment system of chlorinated solvents. I generally give myself an hour after class for any meetings scheduled with professors as I am still figuring out my adviser and advisory committee, then I drive back to Biohabitats to finish out the remainder of the work day. The last two weeks were an exception (hence the word – ‘typical’), as I needed more time on campus during the week to meet with my fellow classmates to work on this design project.

  • Thursdays & Fridays – University of Akron

Thursday afternoons, I have a class in Biomimicry Design & Application, where we are exploring bio-inspired ways to improve exercise equipment on long-term spaceflight missions in partnership with NASA Glenn Research Center’s Human Research Program. I come in late Thursday mornings to spend time on class readings and homework, meet with students in my classes for our design projects, as well as professors re: advisory committee and potential thesis topics.

Fridays, I have Environmental Engineering Design in the morning, followed by our afternoon Integrated Biosciences (IB) guest lecture series. I’ve heard interesting presentations on swarm intelligence, fish locomotion, architectural production using robotics and applied biomimicry. We are also able to participate in student lunches with our guest speakers before their lecture.

This past week, I helped organize the schedule of guest lecturer Julian Vincent, a retired professor from the University of Oxford active in the ontologies of biomimicry. See the following recent article for an overview of the topic: The trade-off- a central concept in biomimetics – published in 2016 by Bioinspired, Biomimetic
and Nanobiomaterials. I helped with the logistics of an all-day ontologies workshop followed by dinner, and a visit to Cleveland Institute of Art and discussion with Doug Paige, an industrial design professor and faculty partner in the Biomimicry Fellowship Program at the University of Akron.

As my schedule allows (which isn’t much!) and per my graduate student contract, I also serve as a QA/QC Contract Technician for the nuclear division of Five Star Products – a vestige of my former working life. The company manufactures safety-related concrete & grout products in Chardon, OH for nuclear power plants, for use in the construction of reactor bases, secondary containment and cooling towers.

I hope this gives you, the readers, a sense of how crazy yet exciting the life of a Biomimicry PhD Fellow can be! I am looking forward to the summer, in which I’ll have more time to spend with my three sponsors. The plan is to continue to explore potential thesis topics and learn how to connect my eventual thesis with my sponsor work program in the form of applied and practical research.

Look for more updates on this blog in the future, and feel free to connect with me on LinkedIn. Cheers and I look forward to the journey ahead!

Reflections from a guinea pig

I’m writing this blogpost, which will be my last on germiNature, still astonished that I defended my PhD work last week. Five years ago I embarked on this unknown journey as one of the three guinea pigs of this new PhD program in Biomimicry. A collaborative idea turning into a reality; Biomimicry being our mission and the glue for bringing people from all over the world together.

The desired outcome for a PhD student is being able to impact the field of study and contribute to its further development. Emily, Bill and I are publishing our dissertations in a couple of months, and it will be interesting to see how each of us completed the same goal with a different approach. But before jumping into a meta-analysis, I should first reflect on my outcomes.

drops-of-leaves-4-2

I have to admit that jumping is definitely a verb that describes me well. I don’t like to stay in the same place for too long. I started with the intention to take on a Biomimicry project from start to finish:

  1. Finding & understanding an interesting biological observation
  2. Abstracting biological principles into more general design principles
  3. Brainstorming and designing: Developing a biomimetic design
  4. Turning it into a commercial product

But it ended up quite differently…

My first 2, almost 3 years I spent on the first step, focusing on understanding UV reflection of avian eggshells. Many of my research efforts turned into dead ends. It wasn’t until I focused specifically on a fairly easy to distinguish characteristic of these eggshells (i.e. the cuticle, which is the outermost layer made from non-crystalized calcium carbonate and organic components) that I made advancements in biological understanding. The cuticle is at least one more factor that contributes to differences in UV coloration.

Being the kind of jumpy person that I am, and because of this slow and tedious process, I started losing my motivation and interest in really wanting to dig deeper and find the ultimate answers. I started taking on other projects, which were fueling me again to continue pursuing my PhD. These projects allowed me to also experience the other steps involved in a biomimicry process.

One project was to test if eggshells can be used to provide UV protection since chicken eggshells showed high reflectance in the same region of terrestrial solar radiation that is most harmful to biological (e.g. our skin) and synthetic polymers (e.g. building materials, paint). Our results, recently published in the journal Sustainability, showed that eggshell pieces indeed provide effective and durable photo-protection. However, future research is needed to investigate if eggshells in a more industrial format (e.g. ground into particles) will also provide high photo-protection. It’s important to note that turning a waste product (we create tons of eggshell waste per day) into a useful product is considered bio-utilization and not biomimicry. Not that one is necessarily better than the other, yet, making that distinction is important for identifying when one should consider pursuing the development of a mimic rather than using a natural product. In this case, since waste eggshells are readily available and are causing environmental issues (eggshell waste attracts rats to landfills), it makes sense to use it rather than a mimic.

Another project was to use natural models to inspire a biomimetic building envelope that reduces energy usage, especially by optimizing thermoregulation (step 3). Being exposed to the architectural design world was a real mind-boggler. Why don’t architects understand my explanation of the aestivation mechanism of the African reed frog? How would they implement this? What is an adaptive thermal comfort model and what does heat extraction mean? How will the biomimetic building envelope save energy?
We are currently reshaping our manuscript so that it will speak to a broad range of readers, and clearly explain how we used our natural models as design inspiration. Hope to share it soon!

During my PhD I discovered the fascinating aspects of entrepreneurship. I learned to identify customers’ needs and do market research. If nobody wants or needs your (biomimicry) product, no need to invest so much time and money in developing it. I had the exciting experience of co-founding two startups, one biomimicry-related and one PhD-problem related:

Hedgemon is an R&D startup, which is using the cleverness of the design of hedgehog spines to develop a new cushioning material.

Jaswig designs, manufactures, and sells height-adjustable and sustainable standing desks, which alleviates your back/neck aches from sitting too many hours behind your computer.

natures-beauty-42Besides all the joy of being involved in a startup, I also experienced a lot of loss in personal productivity and team collaboration due to misunderstandings or lack of communication. But frustrations = opportunity (yes, I’ve developed a business mindset)! I’m currently on a mission to learn from nature how we can communicate more effectively. It will need more digging and testing in real-life business settings before reaching publishable outcomes, but in the meantime you can read my attained insights on my blog “How nature says it”.

One more month to synthesize all of this into a dissertation document… Almost there! I hope that by sharing my experiences, challenges, concerns and research results I can show how formal education facilitates the development and practical use of biomimicry. Bill, Emily and I are the first batch of graduating Biomimicry Fellows, with many more to come! Curious to see what they will work on and how their PhD track unrolls.

And I guess this is a goodbye to you, readers of Germinature. Hope to have sparked some new ideas or questions, and I’m always happy to keep the conversation going! Reach out to me: daphne{at}fecheyr{dot}be. Thanks for reading.